Hydrogen is one of the most important strategic clean energy vectors for a sustainable transition to clean energy. However, the majority of hydrogen production comes from steam reforming and other reactions that are based on the use of hydrocarbons compounds. Therefore, it is imperative that hydrogen production relies on sustainable methods. One of the most promising way is electrocatalytic water splitting (1), which involves the application of a potential between the anode and the cathode in water. The two reactions occurring in an electrolyzer are the hydrogen evolution reaction (HER) at the cathode and the oxygen evolution reaction (OER) at the anode. A way to reduce the potential required for an electrolyzer to produce hydrogen is to replace the OER by the oxidation of alternative compounds for the anodic reaction. Urea, a common and very abundant environmental pollutant, is a promising compound for this aim. Indeed, the theoretical potential required for urea oxidation reaction (UOR) is 0.37 V, that is 70 % lower than the 1.23V required for OER (2). Researchers also aim to reduce as much as possible the potential required for water splitting by finding efficient electrocatalysts. The most efficient catalytic materials for OER and UOR are noble metals, but their prohibitive costs and the low availability make their use for a large-scale industrial application nearly impossible. Therefore, the research on new catalytic compounds is crucial and literature highlights how nickel-based materials as promising candidates for both OER and UOR in alkaline environments. Nickel is also abundantly available as waste from the galvanic industry. In this study, different NiO, Ni(OH)₂, and NiS compounds were obtained through circular economy processes as potential electrocatalysts for UOR. NiO and Ni(OH)₂ were provided by Circular Materials S.r.l., while NiS was synthesized via chemical vapor deposition (CVD) starting from circular Ni(OH)2. The electrochemical activity of these materials was tested using a conventional three-electrode setup and a differential electrochemical mass spectrometer (DEMS), which enabled the identification of the onset potentials of various UOR and OER products. This analysis revealed that NiOOH acts as the active site for UOR. Specifically, for Ni(OH)2, the onset potential of N2 evolution coincides with the Ni2+/Ni3+ redox peak (1.31 V for the pre-activated material and 1.26 V after activation). Moreover, OER activity was observed at higher potentials than UOR, confirming the lower energy requirements of UOR. These materials were also tested in an anion exchange membrane water electrolyzer (AEMWE), where a current staircase measurement was performed in two different environments: 1 M KOH and 1 M KOH + 0.33 M urea. The results confirmed a reduction in the energy required for water electrolysis in the presence of urea, especially at low current densities.
L’idrogeno è uno dei vettori energetici puliti strategici più importanti per una transizione energetica pulita. Tuttavia, la maggior parte della produzione di idrogeno proviene dal reforming del metano e da altre reazioni basate sull’uso di composti idrocarburici. Per questo motivo, è fondamentale che la produzione di idrogeno si basi su metodi sostenibili. Uno dei metodi più promettenti è la scissione elettrocatalitica dell’acqua (1), che prevede l’applicazione di un potenziale tra l’anodo e il catodo in un ambiente acquoso. Le due reazioni che avvengono in un elettrolizzatore sono la reazione di evoluzione dell’idrogeno (HER) al catodo e la reazione di evoluzione dell’ossigeno (OER) all’anodo. Un modo per ridurre il potenziale necessario affinché un elettrolizzatore produca idrogeno è sostituire l’OER con l’ossidazione di composti alternativi nella reazione anodica. L’urea, un inquinante ambientale comune e molto abbondante, è un composto promettente a questo scopo. Infatti, il potenziale teorico richiesto per la reazione di ossidazione dell’urea (UOR) è di 0,37 V, cioè il 70% in meno rispetto ai 1,23 V richiesti per l’OER (2). La ricerca mira anche a ridurre il più possibile il potenziale necessario per la scissione dell’acqua mediante la scoperta di elettrocatalizzatori efficienti. I materiali catalitici più efficienti per OER e UOR sono i metalli nobili, ma il loro costo proibitivo e la scarsa disponibilità ne rendono l’impiego su scala industriale difficilmente realizzabile. Pertanto, la ricerca di nuovi composti catalitici è cruciale, e la letteratura evidenzia come i materiali a base di nichel siano candidati promettenti sia per l’OER che per l’UOR in ambienti alcalini. Il nichel, inoltre, è abbondantemente disponibile come scarto dell’industria galvanica. In questo studio, diversi composti di NiO, Ni(OH)₂ e NiS, ottenuti tramite processi di economia circolare, sono stati studiati come potenziali elettrocatalizzatori per l’UOR. NiO e Ni(OH)₂ sono stati forniti da Circular Materials S.r.l., mentre il NiS è stato sintetizzato tramite deposizione chimica da fase vapore (CVD) a partire da Ni(OH)₂ circolare. L’attività elettrochimica di questi materiali è stata testata utilizzando un setup elettrochimico convenzionale a tre elettrodi e uno spettrometro di massa elettrochimico differenziale (DEMS), che ha permesso di identificare i potenziali di onset delle varie reazioni, UOR e OER. Questa analisi ha rivelato che il NiOOH agisce come sito attivo per l’UOR. In particolare, per il Ni(OH)₂, il potenziale di onset dell’evoluzione di N₂ coincide con il picco redox Ni²⁺/Ni³⁺ (1,31 V per il materiale pre-attivato e 1,26 V dopo l’attivazione). Inoltre, l’attività dell'OER è stata osservata a potenziali più alti rispetto all’UOR, confermando i minori requisiti energetici di quest’ultima. Questi materiali sono stati testati anche in un elettrolizzatore a membrana anionica (AEMWE), dove è stata eseguita una misura a gradini di corrente in due ambienti diversi: 1 M KOH e 1 M KOH + 0,33 M urea. I risultati hanno confermato una riduzione dell’energia necessaria per l’elettrolisi dell’acqua in presenza di urea, in particolare a basse densità di corrente.
Catalizzatori elettrochimici circolari a base di nichel per l'elettrolisi dell'acqua assistita dall'urea.
BACIAMI, ANDREA
2024/2025
Abstract
Hydrogen is one of the most important strategic clean energy vectors for a sustainable transition to clean energy. However, the majority of hydrogen production comes from steam reforming and other reactions that are based on the use of hydrocarbons compounds. Therefore, it is imperative that hydrogen production relies on sustainable methods. One of the most promising way is electrocatalytic water splitting (1), which involves the application of a potential between the anode and the cathode in water. The two reactions occurring in an electrolyzer are the hydrogen evolution reaction (HER) at the cathode and the oxygen evolution reaction (OER) at the anode. A way to reduce the potential required for an electrolyzer to produce hydrogen is to replace the OER by the oxidation of alternative compounds for the anodic reaction. Urea, a common and very abundant environmental pollutant, is a promising compound for this aim. Indeed, the theoretical potential required for urea oxidation reaction (UOR) is 0.37 V, that is 70 % lower than the 1.23V required for OER (2). Researchers also aim to reduce as much as possible the potential required for water splitting by finding efficient electrocatalysts. The most efficient catalytic materials for OER and UOR are noble metals, but their prohibitive costs and the low availability make their use for a large-scale industrial application nearly impossible. Therefore, the research on new catalytic compounds is crucial and literature highlights how nickel-based materials as promising candidates for both OER and UOR in alkaline environments. Nickel is also abundantly available as waste from the galvanic industry. In this study, different NiO, Ni(OH)₂, and NiS compounds were obtained through circular economy processes as potential electrocatalysts for UOR. NiO and Ni(OH)₂ were provided by Circular Materials S.r.l., while NiS was synthesized via chemical vapor deposition (CVD) starting from circular Ni(OH)2. The electrochemical activity of these materials was tested using a conventional three-electrode setup and a differential electrochemical mass spectrometer (DEMS), which enabled the identification of the onset potentials of various UOR and OER products. This analysis revealed that NiOOH acts as the active site for UOR. Specifically, for Ni(OH)2, the onset potential of N2 evolution coincides with the Ni2+/Ni3+ redox peak (1.31 V for the pre-activated material and 1.26 V after activation). Moreover, OER activity was observed at higher potentials than UOR, confirming the lower energy requirements of UOR. These materials were also tested in an anion exchange membrane water electrolyzer (AEMWE), where a current staircase measurement was performed in two different environments: 1 M KOH and 1 M KOH + 0.33 M urea. The results confirmed a reduction in the energy required for water electrolysis in the presence of urea, especially at low current densities.| File | Dimensione | Formato | |
|---|---|---|---|
|
Andrea_Baciami_Master_Thesis.pdf
accesso aperto
Dimensione
6.69 MB
Formato
Adobe PDF
|
6.69 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/92311