Arid lands are characterized by low soil water content, with an aridity index (AI) below 0.65, covering approximately 41% of the Earth's surface. Despite being considered extreme environments, these regions host a rich microbial biodiversity, including fungi, algae, bacteria, bryophytes and cyanobacteria. The increasing global temperatures due to climate change are exacerbating aridification leading to a decline in microbial communities. This study focuses on continuing the BIODESERT project by identifying and analyzing desert microalgae cultivated in fourteen soil samples. An algal photobioreactor was employed to monitor the cultures, simulating an industrial growth environment. This approach facilitates the selection of microalgae for their ability to grow in extreme conditions, which will optimize biomass production and decrease contamination risks. Key parameters such as pH, light intensity, and temperature were monitored. In particular, the growth trend was assessed through repeated spectrophotometer measurements. Subsequently, samples were collected for DNA extraction using "Quick-DNA Fecal/Soil Microbe Microprep" kit. Despite the significant microbial diversity in arid soils, knowledge remains limited, therefore this study represents a preliminary screening aimed at characterizing microalgal biodiversity adapted to desertified areas and to better understand which, among the species are more resilience than others to environmental stressors. Future applications include potential industrial biotechnological uses, for example in cosmetics, food, and animal feed fields. Moreover, the presence of carotenoids in these microalgae may contribute to human health by counteracting oxidative stress and preventing the effects of free radicals. These compounds are important for their antioxidant, anti-aging, anti-inflammatory, antiangiogenic, cardioprotective, and hepatoprotective properties. The findings of this study will be a first step to carrying out more in-depth studies in the future.
Le terre aride sono caratterizzate da un basso contenuto idrico del suolo, con un indice di aridità (AI) inferiore a 0,65, e coprono circa il 41% della superficie terrestre. Nonostante siano considerate ambienti estremi, queste regioni ospitano una ricca biodiversità microbica, comprendente funghi, alghe, batteri, briofite e cianobatteri. L’aumento delle temperature globali dovuto ai cambiamenti climatici sta intensificando i processi di aridificazione, portando a un declino delle comunità microbiche. Questo studio si inserisce nella continuazione del progetto BIODESERT e ha come obiettivo l’identificazione e l’analisi di microalghe desertiche coltivate a partire da quattordici campioni di suolo. Per monitorare le colture è stato impiegato un fotobioreattore algale, in grado di simulare un ambiente di crescita industriale. Questo approccio consente di selezionare le microalghe sulla base della loro capacità di crescere in condizioni estreme, ottimizzando così la produzione di biomassa e riducendo i rischi di contaminazione. Sono stati monitorati parametri chiave come pH, intensità luminosa e temperatura. In particolare, l’andamento della crescita è stato valutato tramite misurazioni spettrofotometriche ripetute. Successivamente, i campioni sono stati raccolti per l’estrazione del DNA utilizzando il kit Quick-DNA Fecal/Soil Microbe Microprep. Nonostante l’elevata diversità microbica presente nei suoli aridi, le conoscenze restano limitate. Questo studio rappresenta quindi uno screening preliminare volto a caratterizzare la biodiversità microalgale adattata alle aree desertificate e a comprendere meglio quali specie risultino più resilienti agli stress ambientali. Le applicazioni future includono potenziali usi industriali in campo biotecnologico, ad esempio nei settori cosmetico, alimentare e mangimistico. Inoltre, la presenza di carotenoidi in queste microalghe potrebbe apportare benefici alla salute umana contrastando lo stress ossidativo e prevenendo gli effetti dei radicali liberi. Questi composti sono noti per le loro proprietà antiossidanti, anti-invecchiamento, antinfiammatorie, antiangiogeniche, cardioprotettive ed epatoprotettive. I risultati di questo studio rappresentano un primo passo per lo sviluppo di ricerche più approfondite in futuro.
Physiological responses of desert soil microalgae to environmental stresses: a photobioreactor study
FORTIN, LAURA
2024/2025
Abstract
Arid lands are characterized by low soil water content, with an aridity index (AI) below 0.65, covering approximately 41% of the Earth's surface. Despite being considered extreme environments, these regions host a rich microbial biodiversity, including fungi, algae, bacteria, bryophytes and cyanobacteria. The increasing global temperatures due to climate change are exacerbating aridification leading to a decline in microbial communities. This study focuses on continuing the BIODESERT project by identifying and analyzing desert microalgae cultivated in fourteen soil samples. An algal photobioreactor was employed to monitor the cultures, simulating an industrial growth environment. This approach facilitates the selection of microalgae for their ability to grow in extreme conditions, which will optimize biomass production and decrease contamination risks. Key parameters such as pH, light intensity, and temperature were monitored. In particular, the growth trend was assessed through repeated spectrophotometer measurements. Subsequently, samples were collected for DNA extraction using "Quick-DNA Fecal/Soil Microbe Microprep" kit. Despite the significant microbial diversity in arid soils, knowledge remains limited, therefore this study represents a preliminary screening aimed at characterizing microalgal biodiversity adapted to desertified areas and to better understand which, among the species are more resilience than others to environmental stressors. Future applications include potential industrial biotechnological uses, for example in cosmetics, food, and animal feed fields. Moreover, the presence of carotenoids in these microalgae may contribute to human health by counteracting oxidative stress and preventing the effects of free radicals. These compounds are important for their antioxidant, anti-aging, anti-inflammatory, antiangiogenic, cardioprotective, and hepatoprotective properties. The findings of this study will be a first step to carrying out more in-depth studies in the future.| File | Dimensione | Formato | |
|---|---|---|---|
|
Fortin_Laura.pdf
accesso aperto
Dimensione
4.2 MB
Formato
Adobe PDF
|
4.2 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/92728