This thesis focuses on the study of aqueous solutions of polyphosphate in the presence of monovalent and divalent salts, specifically NaCl and MgCl₂, using Molecular Dynamics simulations. The objective is to shed light on polyphosphate association. Experimental studies have shown that both salts are able to induce liquid–liquid phase separation, but their critical concentrations differ by at least one order of magnitude, and the effects of temperature are opposite: as temperature increases, miscibility increases in the case of NaCl and decreases in the case of MgCl₂. The origin of these differences is unclear, and the occurrence of immiscibility in the presence of monovalent cations is particularly difficult to explain. The study is motivated by the specific interest in polyphosphate, an important biopolymer present in all three domains of life, which is also used in technological applications. More generally, this study aims to acquire new insights into the molecular mechanisms underlying association phenomena in polyelectrolyte solutions, which are notoriously difficult to rationalize. Polyphosphate, which has a relatively simple molecular structure, can be used as a case study. The application of Molecular Dynamics to association phenomena in aqueous solutions of polyelectrolytes presents several challenges, related to the limitations of the temporal and spatial scales accessible to simulations, as well as to those of the models used to describe the interactions between atoms. In this thesis, simulations of aqueous solutions containing one or two polyphosphate chains are carried out, using different models, for a total of over 15 μs. The simulations show that the behavior of the systems is determined by a delicate balance between polymer–ion, polymer–solvent, and ion–solvent interactions, which critically depends on the choice of models for water and ions. The study highlights different effects of NaCl and MgCl₂ on the structure of polyphosphate chains and on the interactions between chains, and makes it possible to propose an explanation for the differences in behavior observed experimentally.
Questa tesi è incentrata sullo studio di soluzioni acquose di polifosfato in presenza di sali mono-valenti e divalenti, specificamente NaCl e MgCl2, usando simulazioni di Dinamica Molecolare. L’obiettivo è fare luce sui fenomeni di associazione del polifosfato. Studi sperimentali hanno evidenziato che entrambi i sali sono in grado di indurre separazione di fase-liquido-liquido, ma le loro concentrazioni critiche differiscono per almeno un ordine di grandezza e gli effetti della temperatura sono opposti: al crescere della temperatura la miscibilità aumenta nel caso di NaCl e diminuisce nel caso di MgCl2. L’origine di queste differenze non è chiara e la comparsa di immiscibilità in presenza di cationi monovalenti è particolarmente difficile da spiegare. Lo studio è motivato dall’interesse specifico del polifosfato, un importante biopolimero presente nei tre domini della vita, che viene anche utilizzato per applicazioni in ambito tecnologico. Più in generale, questo studio si propone di acquisire nuovi elementi sui meccanismi molecolari alla base dei fenomeni di associazione in soluzioni di polielettroliti, notoriamente difficili da razionalizzare. Il polifosfato, che ha una struttura molecolare relativamente semplice, rappresenta un sistema adatto per uno studio di base. L’applicazione della Dinamica Molecolare ai fenomeni di associazione in soluzioni acquose di polielettroliti presenta vari aspetti di difficoltà, legati ai limiti delle scale temporali e spaziali accessibili alle simulazioni e a quelli dei modelli impiegati per descrivere le interazioni tra gli atomi. In questa tesi sono state condotte simulazioni di soluzioni acquose contenenti una o due catene di polifosfato, usando modelli diversi, per un totale di oltre 15 μs. Le simulazioni hanno mostrato che il comportamento dei sistemi è determinato da un sottile bilancio tra le interazioni polimero-ioni, polimero-solvente e ioni-solvente, che dipende in modo critico dalla scelta dei modelli per l’acqua e per gli ioni. Lo studio ha evidenziato effetti diversi di NaCl e MgCl2 sulla struttura delle catene di polifosfato e sulle interazioni tra le catene, e ha consentito di proporre una spiegazione per le differenze di comportamento osservate sperimentalmente.
Effetto della temperatura e di ioni sull'associazione di polielettroliti: il polifosfato come caso di studio
CAPPELLETTO, FRANCESCO
2024/2025
Abstract
This thesis focuses on the study of aqueous solutions of polyphosphate in the presence of monovalent and divalent salts, specifically NaCl and MgCl₂, using Molecular Dynamics simulations. The objective is to shed light on polyphosphate association. Experimental studies have shown that both salts are able to induce liquid–liquid phase separation, but their critical concentrations differ by at least one order of magnitude, and the effects of temperature are opposite: as temperature increases, miscibility increases in the case of NaCl and decreases in the case of MgCl₂. The origin of these differences is unclear, and the occurrence of immiscibility in the presence of monovalent cations is particularly difficult to explain. The study is motivated by the specific interest in polyphosphate, an important biopolymer present in all three domains of life, which is also used in technological applications. More generally, this study aims to acquire new insights into the molecular mechanisms underlying association phenomena in polyelectrolyte solutions, which are notoriously difficult to rationalize. Polyphosphate, which has a relatively simple molecular structure, can be used as a case study. The application of Molecular Dynamics to association phenomena in aqueous solutions of polyelectrolytes presents several challenges, related to the limitations of the temporal and spatial scales accessible to simulations, as well as to those of the models used to describe the interactions between atoms. In this thesis, simulations of aqueous solutions containing one or two polyphosphate chains are carried out, using different models, for a total of over 15 μs. The simulations show that the behavior of the systems is determined by a delicate balance between polymer–ion, polymer–solvent, and ion–solvent interactions, which critically depends on the choice of models for water and ions. The study highlights different effects of NaCl and MgCl₂ on the structure of polyphosphate chains and on the interactions between chains, and makes it possible to propose an explanation for the differences in behavior observed experimentally.| File | Dimensione | Formato | |
|---|---|---|---|
|
TESI_CAPPELLETTO_FRANCESCO_A.pdf
Accesso riservato
Dimensione
20.51 MB
Formato
Adobe PDF
|
20.51 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/92811