The aim of this thesis project is the development and investigation of an electrodic material for the oxygen evolution reaction (OER), which can be easily and effectively integrated into a proton exchange membrane electrolyzer (PEM-EL), leveraging the technology and established know-how of proton exchange membrane fuel cells (PEM-FC). In particular, dimensionally stable anodes consisting of IrO₂ supported on ceria were synthesized via solid-state synthesis. The electrochemical characterization of the composite material, along with a commercial IrO₂ reference, was carried out using standard techniques such as cyclic voltammetry and electrochemical impedance spectroscopy (EIS), employing a gas diffusion electrode setup. As part of the impedance analysis, a Distribution of Relaxation Time (DRT) study was also performed, with the aim of identifying and analyzing the various resistive contributions involved in the electrochemical processes. Furthermore, the effect of the support on both the reaction kinetics and the different resistive components of the system was evaluated. The physicochemical characterization of the composite material was conducted using techniques such as X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM).
Lo scopo del presente progetto di tesi è lo sviluppo e lo studio di un materiale elettrodico per la reazione di evoluzione dell’ossigeno (OER), facilmente e efficacemente integrabile in un elettrolizzatore a membrana a scambio protonico (PEM-EL), sfruttando la tecnologia e il know-how consolidati delle celle a combustibile PEM (PEM-FC). In particolare, sono stati sintetizzati, mediante sintesi allo stato solido, anodi dimensionalmente stabili costituiti da IrO₂ supportato su ceria. La caratterizzazione elettrochimica del materiale composito e di un IrO₂ commerciale di riferimento è stata condotta attraverso tecniche standard di voltammetria ciclica e spettroscopia di impedenza elettrochimica (EIS), utilizzando una cella a diffusione di gas. Per quanto riguarda l’analisi d’impedenza, è stata condotta anche una valutazione della Distribution of Relaxation Time (DRT), con l’obiettivo di identificare e approfondire i diversi contributi resistivi associati ai processi elettrochimici. È stato inoltre esaminato l’effetto del supporto sia sulla cinetica della reazione che sulle varie componenti resistive del sistema. La caratterizzazione chimico-fisica del materiale composito è stata eseguita mediante tecniche quali diffrazione a raggi X (XRD), spettroscopia Raman e microscopia elettronica a trasmissione (TEM).
Caratterizzazione elettrochimica di catalizzatori a base di IrO₂ per la reazione di evoluzione dell’ossigeno: sintesi di IrO₂ supportato su CeO₂ e sviluppo di un protocollo standard di caratterizzazione.
SEKULIĆ, TARA
2024/2025
Abstract
The aim of this thesis project is the development and investigation of an electrodic material for the oxygen evolution reaction (OER), which can be easily and effectively integrated into a proton exchange membrane electrolyzer (PEM-EL), leveraging the technology and established know-how of proton exchange membrane fuel cells (PEM-FC). In particular, dimensionally stable anodes consisting of IrO₂ supported on ceria were synthesized via solid-state synthesis. The electrochemical characterization of the composite material, along with a commercial IrO₂ reference, was carried out using standard techniques such as cyclic voltammetry and electrochemical impedance spectroscopy (EIS), employing a gas diffusion electrode setup. As part of the impedance analysis, a Distribution of Relaxation Time (DRT) study was also performed, with the aim of identifying and analyzing the various resistive contributions involved in the electrochemical processes. Furthermore, the effect of the support on both the reaction kinetics and the different resistive components of the system was evaluated. The physicochemical characterization of the composite material was conducted using techniques such as X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM).| File | Dimensione | Formato | |
|---|---|---|---|
|
Thesis_Tara_Sekulic_PDF_A.pdf
Accesso riservato
Dimensione
8.25 MB
Formato
Adobe PDF
|
8.25 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/92837