This thesis explores statistical methodologies for differential gene expression (DE) and gene detection (DD) analysis in single-cell data. Following a biological and technological overview, a two-stage test for integrating DE and DD is presented, in two- and four-group versions, with particular attention to controlling the Type I error rate. The effectiveness of the methods is evaluated through simulations and then applied to real data related to sleep deprivation in mice, focusing on the identification of specific signals in distinct cell clusters.
Questa tesi esplora metodologie statistiche per l’analisi differenziale dell’espressione genica (DE) e della rilevazione genica (DD) in dati single-cell. Dopo un inquadramento biologico e tecnologico, viene presentato il test a due stadi per l’integrazione di DE e DD, a due e a quattro gruppi, con particolare attenzione al controllo dell’errore di primo tipo. L’efficacia dei metodi è valutata tramite simulazioni e in seguito applicata a dati reali relativi alla deprivazione di sonno nei topi, con un focus sull’identificazione di segnali specifici in cluster cellulari distinti.
Analisi integrata di dati multi-omici a singola cellula: un approccio statistico a due stadi
BISSON, SARA
2024/2025
Abstract
This thesis explores statistical methodologies for differential gene expression (DE) and gene detection (DD) analysis in single-cell data. Following a biological and technological overview, a two-stage test for integrating DE and DD is presented, in two- and four-group versions, with particular attention to controlling the Type I error rate. The effectiveness of the methods is evaluated through simulations and then applied to real data related to sleep deprivation in mice, focusing on the identification of specific signals in distinct cell clusters.| File | Dimensione | Formato | |
|---|---|---|---|
|
Bisson_Sara.pdf
accesso aperto
Dimensione
888.64 kB
Formato
Adobe PDF
|
888.64 kB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/93031