Bone tissue is well known for its anisotropic structure, resulting from the complex organization of collagen fibers and the mineral matrix, which imparts direction-dependent mechanical properties to the material. However, in modeling and computational practice, bone is often described as an isotropic or, at best, orthotropic material. This simplification is reflected in biomechanical models that neglect the true spatial and directional variations of tissue properties, thereby reducing the accuracy of simulations—particularly in patient-specific contexts. Despite this, there is still a lack of consolidated and automated procedures capable of estimating directional mechanical properties directly from biological and morphological data, such as those obtained through imaging techniques. In this thesis, an automated procedure was developed for identifying the principal directions of anisotropy in bone tissue, applied to murine femurs. The work involves the processing of micro-CT images followed by structural analysis using orientation algorithms, in order to provide a local and realistic estimation of the distribution of preferential directions.

Il tessuto osseo è notoriamente caratterizzato da una struttura anisotropa, dovuta alla complessa organizzazione delle fibre e della matrice minerale, che conferisce al materiale proprietà meccaniche direzionali. Tuttavia, nella pratica modellistica e computazionale, l'osso viene frequentemente descritto come un materiale isotropo o, al più, ortotropo. Tale semplificazione si riflette in modelli biomeccanici che trascurano le reali variazioni spaziali e direzionali delle proprietà del tessuto, riducendo l'accuratezza delle simulazioni, in particolare nei contesti paziente-specifici. Nonostante ciò, mancano ancora procedure consolidate e automatizzate in grado di stimare le proprietà meccaniche direzionali direttamente a partire da dati biologici e morfologici, come quelli ottenuti tramite tecniche di imaging. Nell'elaborato si è sviluppata una procedura automatizzata per l'identificazione delle direzioni principali di anisotropia del tessuto osseo, applicata a femori murini. Il lavoro prevede l'elaborazione di immagini micro-CT e la successiva analisi strutturale tramite algoritmi di orientamento, al fine di fornire una stima locale e realistica della distribuzione delle direzioni preferenziali.

Sviluppo di un modello computazionale automatizzato per l'analisi anisotropica di ossa

NIDOLA, MICHELA
2024/2025

Abstract

Bone tissue is well known for its anisotropic structure, resulting from the complex organization of collagen fibers and the mineral matrix, which imparts direction-dependent mechanical properties to the material. However, in modeling and computational practice, bone is often described as an isotropic or, at best, orthotropic material. This simplification is reflected in biomechanical models that neglect the true spatial and directional variations of tissue properties, thereby reducing the accuracy of simulations—particularly in patient-specific contexts. Despite this, there is still a lack of consolidated and automated procedures capable of estimating directional mechanical properties directly from biological and morphological data, such as those obtained through imaging techniques. In this thesis, an automated procedure was developed for identifying the principal directions of anisotropy in bone tissue, applied to murine femurs. The work involves the processing of micro-CT images followed by structural analysis using orientation algorithms, in order to provide a local and realistic estimation of the distribution of preferential directions.
2024
Development of an automated computational model for anisotropic bone analysis
Il tessuto osseo è notoriamente caratterizzato da una struttura anisotropa, dovuta alla complessa organizzazione delle fibre e della matrice minerale, che conferisce al materiale proprietà meccaniche direzionali. Tuttavia, nella pratica modellistica e computazionale, l'osso viene frequentemente descritto come un materiale isotropo o, al più, ortotropo. Tale semplificazione si riflette in modelli biomeccanici che trascurano le reali variazioni spaziali e direzionali delle proprietà del tessuto, riducendo l'accuratezza delle simulazioni, in particolare nei contesti paziente-specifici. Nonostante ciò, mancano ancora procedure consolidate e automatizzate in grado di stimare le proprietà meccaniche direzionali direttamente a partire da dati biologici e morfologici, come quelli ottenuti tramite tecniche di imaging. Nell'elaborato si è sviluppata una procedura automatizzata per l'identificazione delle direzioni principali di anisotropia del tessuto osseo, applicata a femori murini. Il lavoro prevede l'elaborazione di immagini micro-CT e la successiva analisi strutturale tramite algoritmi di orientamento, al fine di fornire una stima locale e realistica della distribuzione delle direzioni preferenziali.
Direzioni principali
Metodi computazional
Anisotropia ossea
Biomeccanica
File in questo prodotto:
File Dimensione Formato  
Nidola_Michela.pdf

Accesso riservato

Dimensione 12.84 MB
Formato Adobe PDF
12.84 MB Adobe PDF

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/93339