The rapid growth of the Internet of Things (IoT) has led the world to a widespread deployment of low-power wireless communication technologies. Among these technologies, LoRaWAN (Long Range Wide Area Network) has emerged as a leading protocol for long-range and energy-efficient data transmission. However, the constrained nature of these systems also introduces unique challenges and difficulties in acquiring effective communication, mainly in remote and harsh environments such as marine ecosystems. This thesis investigates the security of LoRaWAN networks in the context of low energy availability, with a focus on real-world vulnerabilities and practical strategies. The study starts with an in-depth review of existing literature and identification of key security vulnerabilities in LoRaWAN-based IoT networks. It also examines how low energy availability weakens the effectiveness of cryptographic techniques, reauthentication processes, and firmware updates, leaving devices more vulnerable to both remote and physical attacks. In order to demonstrate the practical implications of these security issues in LoRaWAN-based IoT systems, real-world examples of smart agriculture, wildlife monitoring, logistics, and health tracking are also discussed. The research explores how predictable transmission behavior, fixed scheduling, and unencrypted metadata can be exploited for efficient jamming, replay attacks, and traffic analysis, even when payload encryption is correctly implemented. A particular emphasis is placed on the balance between robust security measures such as encryption, session key management, and message integrity and their impact on energy consumption. Through an earlier case study and analysis of practical LoRaWAN behavior, several attack vectors are identified, including the exploitation of device resets to bypass duty-cycle regulations, and the use of traffic patterns to infer device roles and timing. To apply and validate these findings in a real-world context, a detailed case study of the M.A.R.E (Machine Learning Applied to Research on Marine Ecosystems) project was conducted. This project involves a LoRaWAN-based marine environmental monitoring system. The case study was examined in terms of hardware and software architecture, system configurations, security posture, and energy efficiency. The results of this case study confirm the presence of key vulnerabilities predicted in the earlier discussion of the research. The study comes to the conclusion that a layered and flexible strategy is needed to secure LoRaWAN systems in energy-constrained environments. The study proposes several mitigation strategies, including adaptive power-aware encryption techniques, randomized message scheduling, and improvements in key management processes. These approaches aim to strike a balance between maintaining strong security and conserving energy, ensuring longer device lifespans without compromising on network robustness. These strategies, when properly implemented, can significantly improve the security and resilience of IoT networks without undermining energy sustainability. Overall, this research contributes to a deeper understanding of the interplay between security and energy efficiency in LoRaWAN-based IoT systems. It offers practical insights and guidelines for researchers and industry stakeholders to design secure and sustainable low-power communication infrastructures for future IoT deployments.
La rapida crescita dell’Internet of Things (IoT) ha portato a una diffusione su larga scala delle tecnologie di comunicazione wireless a bassa potenza. Tra queste tecnologie, il LoRaWAN (Long Range Wide Area Network) si è affermato come protocollo di riferimento per la trasmissione di dati a lunga distanza ed energeticamente efficiente. Tuttavia, la natura vincolata di tali sistemi introduce sfide uniche e difficoltà nel garantire una comunicazione efficace, soprattutto in ambienti remoti e ostili come gli ecosistemi marini. Questa tesi indaga la sicurezza delle reti LoRaWAN nel contesto della limitata disponibilità energetica, con un’attenzione particolare alle vulnerabilità reali e alle strategie pratiche. Lo studio prende avvio da una revisione approfondita della letteratura esistente e dall’identificazione delle principali vulnerabilità di sicurezza nelle reti IoT basate su LoRaWAN. Viene inoltre esaminato come la scarsità di energia possa ridurre l’efficacia delle tecniche crittografiche, dei processi di riautenticazione e degli aggiornamenti firmware, rendendo i dispositivi più vulnerabili ad attacchi sia remoti sia fisici. Per dimostrare le implicazioni pratiche di queste problematiche di sicurezza nei sistemi IoT basati su LoRaWAN, vengono discussi esempi reali relativi all’agricoltura intelligente, al monitoraggio della fauna selvatica, alla logistica e al tracciamento sanitario. La ricerca esplora come il comportamento di trasmissione prevedibile, la pianificazione fissa e i metadati non crittografati possano essere sfruttati per condurre attacchi di jamming, replay e analisi del traffico, anche quando la cifratura del payload è correttamente implementata. Particolare enfasi è posta sull’equilibrio tra solide misure di sicurezza – come cifratura, gestione delle chiavi di sessione e integrità dei messaggi – e il loro impatto sui consumi energetici. Attraverso uno studio di caso preliminare e l’analisi del comportamento pratico del LoRaWAN, sono stati identificati diversi vettori di attacco, tra cui lo sfruttamento dei reset dei dispositivi per aggirare le regolamentazioni sul duty-cycle e l’uso dei pattern di traffico per dedurre ruoli e tempistiche dei dispositivi. Per applicare e validare tali risultati in un contesto reale, è stato condotto uno studio di caso dettagliato sul progetto M.A.R.E (Machine Learning Applied toResearch on Marine Ecosystems), che prevede un sistema di monitoraggio ambientale marino basato su LoRaWAN. Lo studio di caso è stato analizzato in termini di architettura hardware e software, configurazioni di sistema, postura di sicurezza ed efficienza energetica. I risultati confermano la presenza delle principali vulnerabilità previste nella fase precedente della ricerca. Lo studio giunge alla conclusione che, per mettere in sicurezza i sistemi LoRaWAN in ambienti con vincoli energetici, è necessaria una strategia stratificata e flessibile. Vengono proposte diverse misure di mitigazione, tra cui tecniche di cifratura adattiva e consapevole dei consumi, pianificazione casuale dei messaggi e miglioramenti nei processi di gestione delle chiavi. Questi approcci mirano a bilanciare la necessità di garantire un’elevata sicurezza con l’esigenza di preservare l’energia, assicurando una maggiore durata operativa dei dispositivi senza compromettere la robustezza della rete. Se correttamente implementate, tali strategie possono migliorare in modo significativo la sicurezza e la resilienza delle reti IoT senza compromettere la sostenibilità energetica. In conclusione, questa ricerca contribuisce a una comprensione più approfondita dell’interazione tra sicurezza ed efficienza energetica nei sistemi IoT basati su LoRaWAN. Essa offre spunti pratici e linee guida per ricercatori e operatori del settore, al fine di progettare infrastrutture di comunicazione a bassa potenza che siano al tempo stesso sicure e sostenibili per le future implementazioni IoT.
Investigating the Security of Low-Power Communication Protocols (With a Focus on LoRaWAN) and the Implications of Low-Energy Availability on the Security of IOT Devices.
ZAIN UL ABEDIN, ZAIN UL ABEDIN
2024/2025
Abstract
The rapid growth of the Internet of Things (IoT) has led the world to a widespread deployment of low-power wireless communication technologies. Among these technologies, LoRaWAN (Long Range Wide Area Network) has emerged as a leading protocol for long-range and energy-efficient data transmission. However, the constrained nature of these systems also introduces unique challenges and difficulties in acquiring effective communication, mainly in remote and harsh environments such as marine ecosystems. This thesis investigates the security of LoRaWAN networks in the context of low energy availability, with a focus on real-world vulnerabilities and practical strategies. The study starts with an in-depth review of existing literature and identification of key security vulnerabilities in LoRaWAN-based IoT networks. It also examines how low energy availability weakens the effectiveness of cryptographic techniques, reauthentication processes, and firmware updates, leaving devices more vulnerable to both remote and physical attacks. In order to demonstrate the practical implications of these security issues in LoRaWAN-based IoT systems, real-world examples of smart agriculture, wildlife monitoring, logistics, and health tracking are also discussed. The research explores how predictable transmission behavior, fixed scheduling, and unencrypted metadata can be exploited for efficient jamming, replay attacks, and traffic analysis, even when payload encryption is correctly implemented. A particular emphasis is placed on the balance between robust security measures such as encryption, session key management, and message integrity and their impact on energy consumption. Through an earlier case study and analysis of practical LoRaWAN behavior, several attack vectors are identified, including the exploitation of device resets to bypass duty-cycle regulations, and the use of traffic patterns to infer device roles and timing. To apply and validate these findings in a real-world context, a detailed case study of the M.A.R.E (Machine Learning Applied to Research on Marine Ecosystems) project was conducted. This project involves a LoRaWAN-based marine environmental monitoring system. The case study was examined in terms of hardware and software architecture, system configurations, security posture, and energy efficiency. The results of this case study confirm the presence of key vulnerabilities predicted in the earlier discussion of the research. The study comes to the conclusion that a layered and flexible strategy is needed to secure LoRaWAN systems in energy-constrained environments. The study proposes several mitigation strategies, including adaptive power-aware encryption techniques, randomized message scheduling, and improvements in key management processes. These approaches aim to strike a balance between maintaining strong security and conserving energy, ensuring longer device lifespans without compromising on network robustness. These strategies, when properly implemented, can significantly improve the security and resilience of IoT networks without undermining energy sustainability. Overall, this research contributes to a deeper understanding of the interplay between security and energy efficiency in LoRaWAN-based IoT systems. It offers practical insights and guidelines for researchers and industry stakeholders to design secure and sustainable low-power communication infrastructures for future IoT deployments.| File | Dimensione | Formato | |
|---|---|---|---|
|
Zainulabedin_Zainulabedin.pdf
Accesso riservato
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/93342