This thesis investigates the development of multilayer disordered optical materials for scalable passive radiative cooling (PRC). Initial experimental studies modified nanoporous paint coatings with hollow glass microspheres and evaluated their optical and thermal performance under real outdoor conditions. Insights from these experiments informed the construction of a full-wave electromagnetic simulation framework using the Finite Element Method (FEM) in COMSOL Multiphysics. Two architectures were optimized: a five-layer stacked structure with increasing dielectric particle sizes and a continuous dense-to-coarse gradient layer. Both designs target high broadband solar reflectance and selective emissivity within the mid-infrared atmospheric window (8–13 µm). Validation involved numerical comparisons with concrete surfaces and state-of-the-art broadband emitters, accounting for radiative balance and convective losses. The results demonstrate significantly enhanced cooling performance, highlighting the potential of the proposed materials for large-scale passive cooling applications.

Questa tesi affronta lo sviluppo di materiali ottici disordinati multilayer per il raffreddamento radiativo passivo (PRC) scalabile. In una prima fase sperimentale, rivestimenti a base di vernice nanoporosa sono stati modificati con microsfere di vetro cave e testati in condizioni ambientali reali per valutarne le proprietà ottiche e termiche. I risultati ottenuti hanno guidato lo sviluppo di una piattaforma di simulazione elettromagnetica full-wave basata sul Metodo degli Elementi Finiti (FEM) in COMSOL Multiphysics. Sono state ottimizzate due architetture: una struttura a cinque strati con particelle dielettriche di dimensioni crescenti e una configurazione a gradiente continuo da denso a poroso. Entrambe mirano ad ottenere un’elevata riflettanza solare spettralmente ampia e un’emissività selettiva nella finestra atmosferica medio-infrarossa (8–13 µm). La validazione è stata condotta attraverso simulazioni comparative con superfici in calcestruzzo e con emettitori broadband esistenti, includendo il bilancio radiativo e le perdite convettive. I risultati dimostrano un incremento significativo delle prestazioni termiche, indicando il potenziale dei materiali progettati per applicazioni su larga scala nel raffreddamento passivo.

Optical Disordered Materials for Passive Radiative Cooling

ERDOĞAN, ATAKAN
2024/2025

Abstract

This thesis investigates the development of multilayer disordered optical materials for scalable passive radiative cooling (PRC). Initial experimental studies modified nanoporous paint coatings with hollow glass microspheres and evaluated their optical and thermal performance under real outdoor conditions. Insights from these experiments informed the construction of a full-wave electromagnetic simulation framework using the Finite Element Method (FEM) in COMSOL Multiphysics. Two architectures were optimized: a five-layer stacked structure with increasing dielectric particle sizes and a continuous dense-to-coarse gradient layer. Both designs target high broadband solar reflectance and selective emissivity within the mid-infrared atmospheric window (8–13 µm). Validation involved numerical comparisons with concrete surfaces and state-of-the-art broadband emitters, accounting for radiative balance and convective losses. The results demonstrate significantly enhanced cooling performance, highlighting the potential of the proposed materials for large-scale passive cooling applications.
2024
Optical Disordered Materials for Passive Radiative Cooling
Questa tesi affronta lo sviluppo di materiali ottici disordinati multilayer per il raffreddamento radiativo passivo (PRC) scalabile. In una prima fase sperimentale, rivestimenti a base di vernice nanoporosa sono stati modificati con microsfere di vetro cave e testati in condizioni ambientali reali per valutarne le proprietà ottiche e termiche. I risultati ottenuti hanno guidato lo sviluppo di una piattaforma di simulazione elettromagnetica full-wave basata sul Metodo degli Elementi Finiti (FEM) in COMSOL Multiphysics. Sono state ottimizzate due architetture: una struttura a cinque strati con particelle dielettriche di dimensioni crescenti e una configurazione a gradiente continuo da denso a poroso. Entrambe mirano ad ottenere un’elevata riflettanza solare spettralmente ampia e un’emissività selettiva nella finestra atmosferica medio-infrarossa (8–13 µm). La validazione è stata condotta attraverso simulazioni comparative con superfici in calcestruzzo e con emettitori broadband esistenti, includendo il bilancio radiativo e le perdite convettive. I risultati dimostrano un incremento significativo delle prestazioni termiche, indicando il potenziale dei materiali progettati per applicazioni su larga scala nel raffreddamento passivo.
Cooling
Scattering
Disordered Materials
Polymer
Reflection
File in questo prodotto:
File Dimensione Formato  
Erdogan_Atakan.pdf

accesso aperto

Dimensione 17.34 MB
Formato Adobe PDF
17.34 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/93344