Bluetooth channel sounding has emerged as a key enabler for indoor positioning, navigation, proximity services, and access control, where stringent energy constraints demand ultra–low-power radios. This thesis presents a low-power Digitally Controlled Oscillator (DCO) for an all-digital phase-locked loop (ADPLL) targeting Bluetooth Low Energy operation in the 2.4GHz band, designed to deliver a stable local oscillator and robust performance during rapid channel hopping. The DCO employs a complementary cross-coupled differential core and three capacitor banks to achieve fine frequency-resolution tuning; only NMOS switched-capacitor cells are used to enhance transient response under large frequency steps and to preserve the off-state quality factor. The DCO operates at 4.8GHz with a 15% tuning range and a bias current below 1mA from a 0.9V supply, achieving phase noise below −110dBc/Hz at a 1MHz offset from the 4.8GHz carrier. A hybrid-weighted coarse bank combining thermometer and binary codes is implemented to guarantee robust and repeatable behavior during channel hopping. To translate the 4.8GHz output to the Bluetooth band, a low-power Current-Starved Injection-Locked Frequency Divider by 2 (CSIL FD) is developed, eliminating the need for power-hungry intermediate buffers. The total power consumption of the DCO–frequency-divider chain is is reduced by almost 63% at 4.8GHz. In addition, a quadrature (I/Q) phase shifter based on a current-starved dynamic latch is designed to drive the mixer with a 25◦ ± 2% duty cycle and 90◦ ± 1◦ quadrature phase accuracy. It consumes less power at the schematic level at 2.4GHz under typical conditions and 50C◦. The proposed architecture demonstrates a power-efficient local oscillator and prescaler solution suitable for Bluetooth channel sounding, balancing aggressive energy budgets with the spectral purity and timing precision required for reliable ranging and direction finding in resource-constrained devices.
Il channel sounding Bluetooth si è affermato come un abilitatore chiave per il posizionamento indoor, la navigazione, i servizi di prossimità e il controllo degli accessi, ambiti in cui vincoli energetici stringenti richiedono radio a ultra-basso consumo. Questa tesi presenta un oscillatore controllato digitalmente (DCO) a bassa potenza per un phase-locked loop completamente digitale (ADPLL), mirato al funzionamento Bluetooth Low Energy nella banda dei 2.4GHz, proget- tato per fornire un oscillatore locale stabile e prestazioni robuste durante rapidi salti di canale. Il DCO impiega un nucleo differenziale complementare a coppie incrociate e tre banchi di capacità per ottenere maggiore risoluzione di fre- quenza; sono impiegate esclusivamente celle a capacità commutata NMOS per migliorare la risposta transitoria in presenza di ampi cambiamenti di frequenza e preservare il fattore di qualità nello stato off. Il DCO opera a 4.8 GHz con un intervallo di regolazione del 15% e una corrente di polarizzazione inferiore a 1 mA da un’alimentazione di 0.9 V, ottenendo un rumore di fase inferiore a −110 dBc/Hz ad uno scostamento di 1 MHz rispetto alla portante a 4.8 GHz. È implementato un banco di tuning grossolano a pesatura ibrida che combina codifiche a termometriche e binarie, per garantire un comportamento robusto e ripetibile durante i cambi di canale. Per traslare l’uscita a 4.8 GHz nella banda Bluetooth, è stato sviluppato un divisore di frequenza Current-Starved Injection-Locked (CSIL FD) per 2 a basso consumo, eliminando la necessità di buffer intermedi ad alto assorbimento. Il consumo di potenza totale della catena DCO–divisore di frequenza è ridotto di quasi il 63% a 4.8 GHz. Inoltre, è stato progettato uno sfasatore in quadratura (I/Q) basato su un latch dinamico a corrente limitata per pilotare il mixer con un duty cycle del 25◦ ± 2% e un’accuratezza della fase di quadratura di 90◦ ± 1◦. A livello di schematico, esso consuma meno potenza a 2.4 GHz in condizioni tipiche e a 50 ◦C. L’architettura proposta dimostra una soluzione di oscillatore locale e prescaler ad alta efficienza energetica, adatta al Bluetooth channel sounding, conciliando budget energetici aggressivi con la purezza spettrale e la precisione temporale necessarie per un ranging affidabile e la stima della direzione in dispositivi con risorse limitate.
Design of Low Power Digitally Controlled Oscillator, Frequency Divider And Quadrature Phase Shifter For Bluetooth Channel Sounding Application Using 22nm CMOS Technology
JALALI, MOHAMMAD FAZIL
2024/2025
Abstract
Bluetooth channel sounding has emerged as a key enabler for indoor positioning, navigation, proximity services, and access control, where stringent energy constraints demand ultra–low-power radios. This thesis presents a low-power Digitally Controlled Oscillator (DCO) for an all-digital phase-locked loop (ADPLL) targeting Bluetooth Low Energy operation in the 2.4GHz band, designed to deliver a stable local oscillator and robust performance during rapid channel hopping. The DCO employs a complementary cross-coupled differential core and three capacitor banks to achieve fine frequency-resolution tuning; only NMOS switched-capacitor cells are used to enhance transient response under large frequency steps and to preserve the off-state quality factor. The DCO operates at 4.8GHz with a 15% tuning range and a bias current below 1mA from a 0.9V supply, achieving phase noise below −110dBc/Hz at a 1MHz offset from the 4.8GHz carrier. A hybrid-weighted coarse bank combining thermometer and binary codes is implemented to guarantee robust and repeatable behavior during channel hopping. To translate the 4.8GHz output to the Bluetooth band, a low-power Current-Starved Injection-Locked Frequency Divider by 2 (CSIL FD) is developed, eliminating the need for power-hungry intermediate buffers. The total power consumption of the DCO–frequency-divider chain is is reduced by almost 63% at 4.8GHz. In addition, a quadrature (I/Q) phase shifter based on a current-starved dynamic latch is designed to drive the mixer with a 25◦ ± 2% duty cycle and 90◦ ± 1◦ quadrature phase accuracy. It consumes less power at the schematic level at 2.4GHz under typical conditions and 50C◦. The proposed architecture demonstrates a power-efficient local oscillator and prescaler solution suitable for Bluetooth channel sounding, balancing aggressive energy budgets with the spectral purity and timing precision required for reliable ranging and direction finding in resource-constrained devices.| File | Dimensione | Formato | |
|---|---|---|---|
|
Jalali_MohammadFazil.pdf
embargo fino al 07/10/2028
Dimensione
4.25 MB
Formato
Adobe PDF
|
4.25 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/93397