This thesis focuses on the design, fabrication, and characterization of ceramic scaffolds for bone tissue regeneration, made of hydroxyapatite (HA) and an HA/β-TCP mixture, with a Neovius-type TPMS geometry and 85% porosity. The main goal was to optimize the sintering process by evaluating the effects of temperature and holding time to achieve the best balance between mechanical strength, porosity retention, and material crystallinity. The use of the Neovius surface allowed the creation of structures with uniform stress distribution and controlled porosity, promoting cell infiltration and nutrient transport without compromising mechanical strength. The scaffolds were produced using 3D MLSA printing, which enables complex and reproducible geometries. The combination of HA and β-TCP allows balancing mechanical stability and gradual resorption, supporting replacement by new bone tissue. Characterization included morphological analyses (optical and SEM), crystallographic studies (XRD), physical measurements, and compression tests. Results showed that sintering temperature is the most critical factor: at 1100°C, scaffolds were fragile, while at 1200–1300°C, mechanical strength and stability improved, though porosity decreased due to densification. The HA/β-TCP mixture densified more easily, showing superior properties already at 1200°C. Sintering time beyond one hour at 1300°C had a marginal effect. In conclusion, the optimal sintering range is between 1200°C and 1300°C, ensuring a balance between mechanical integrity and porosity. The study highlights the importance of an integrated approach, calibrating processing parameters according to biological and biomechanical requirements, paving the way for customized and multifunctional scaffolds.
Il presente lavoro di tesi riguarda la progettazione, realizzazione e caratterizzazione di scaffold ceramici per la rigenerazione ossea, realizzati in idrossiapatite (HA) e in miscela HA/β-TCP, con geometria TPMS di tipo Neovius e porosità dell’85%. L’obiettivo principale è stato ottimizzare la sinterizzazione, valutando l’influenza di temperatura e tempo per ottenere il miglior compromesso tra resistenza meccanica, mantenimento della porosità e cristallinità del materiale. L’uso della superficie di Neovius ha permesso di ottenere strutture con distribuzione uniforme delle tensioni e porosità controllata, favorendo infiltrazione cellulare e trasporto di nutrienti senza compromettere la resistenza meccanica. Gli scaffold sono stati realizzati tramite stampa 3D MLSA, che consente geometrie complesse e riproducibili. La combinazione di HA e β-TCP permette di bilanciare stabilità meccanica e riassorbimento graduale, favorendo la sostituzione con nuovo tessuto osseo. La caratterizzazione dei campioni ha previsto analisi morfologiche (ottica e SEM), studi cristallografici (XRD), misure fisiche e test di compressione. I risultati hanno mostrato che la temperatura di sinterizzazione è il fattore principale: a 1100°C gli scaffold risultano fragili, mentre a 1200–1300°C la resistenza e la stabilità migliorano, seppur con una riduzione della porosità. La miscela HA/β-TCP si densifica più facilmente, sviluppando migliori proprietà già a 1200°C. Il tempo di sinterizzazione oltre un’ora a 1300°C ha effetti marginali. In conclusione, l’intervallo ottimale di sinterizzazione è tra 1200°C e 1300°C, garantendo equilibrio tra integrità meccanica e porosità. Lo studio evidenzia l’importanza di un approccio integrato, calibrando i parametri di processo secondo esigenze biologiche e biomeccaniche, aprendo la strada a scaffold personalizzati e multifunzionali.
Progettazione e Ottimizzazione Termica di Scaffold in Idrossiapatite (HA) e Fostafo Tricalcico (TCP) con Geometria TPMS Neovius per la Rigenerazione Ossea
DI DOMENICO, ELISABETTA
2024/2025
Abstract
This thesis focuses on the design, fabrication, and characterization of ceramic scaffolds for bone tissue regeneration, made of hydroxyapatite (HA) and an HA/β-TCP mixture, with a Neovius-type TPMS geometry and 85% porosity. The main goal was to optimize the sintering process by evaluating the effects of temperature and holding time to achieve the best balance between mechanical strength, porosity retention, and material crystallinity. The use of the Neovius surface allowed the creation of structures with uniform stress distribution and controlled porosity, promoting cell infiltration and nutrient transport without compromising mechanical strength. The scaffolds were produced using 3D MLSA printing, which enables complex and reproducible geometries. The combination of HA and β-TCP allows balancing mechanical stability and gradual resorption, supporting replacement by new bone tissue. Characterization included morphological analyses (optical and SEM), crystallographic studies (XRD), physical measurements, and compression tests. Results showed that sintering temperature is the most critical factor: at 1100°C, scaffolds were fragile, while at 1200–1300°C, mechanical strength and stability improved, though porosity decreased due to densification. The HA/β-TCP mixture densified more easily, showing superior properties already at 1200°C. Sintering time beyond one hour at 1300°C had a marginal effect. In conclusion, the optimal sintering range is between 1200°C and 1300°C, ensuring a balance between mechanical integrity and porosity. The study highlights the importance of an integrated approach, calibrating processing parameters according to biological and biomechanical requirements, paving the way for customized and multifunctional scaffolds.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tesi_Elisabetta_Di_Domenico.pdf
accesso aperto
Dimensione
9.09 MB
Formato
Adobe PDF
|
9.09 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/93412