As the demand for compact, energy-efficient power management solutions grows, traditional DC-DC converter topologies face new challenges. The Three-Level Buck converter (3LBC), especially in its Flying Capacitor (FC) variant, emerges as a promising alternative to conventional step-down architectures. By introducing an intermediate voltage level through a FC, the 3LBC topology inherently doubles the effective switching frequency seen by the output filter. Moreover, this topology allows the reduction of voltage stress across switches and minimizes the size of passive components, while maintaining the simplicity of a Buck-like voltage conversion ratio. However, the 3LBC introduces new challenges for designers, such as the balancing and stability of the FC. Recent studies have demonstrated that Current-Mode control can be effectively applied to 3LBC without compromising the stability of the FC. However, implementing current control loops typically requires accurate current sensing, which can be impractical due to the cost of high-bandwidth amplifiers, power losses introduced by sensing components and integration difficulties. This thesis aims to solve the aforementioned issues by developing and implementing a current observer designed for the 3LBC, considering the stability requirements for the FC as well. The first objective of this work is to analyze the 3LBC in its steady-state and small-signal working conditions. Then, the observer algorithm is introduced and tailored for the 3LBC, resulting in reduced hardware complexity and a simple IIR digital filter. Flying Capacitor balancing has been addressed: with no additional components, it’s possible to stabilize and balance the FC. The proposed techniques and methodologies are rigorously validated through both simulation models, incorporating parasitic effects and circuit non-idealities, and experimental prototype. The current observer's effectiveness is demonstrated by leveraging the estimated current within a dual-loop architecture and deploying predictive control.
Con la crescente domanda di soluzioni di power management compatte ed efficienti, le tradizionali topologie di convertitori DC-DC affrontano nuove sfide. Il convertitore Buck a Tre Livelli (3LBC), in particolare nella sua variante con Capacità Flottante (FC), emerge come una promettente alternativa alle architetture step-down convenzionali. Introducendo un livello di tensione intermedio attraverso una FC, la topologia 3LBC raddoppia intrinsecamente la frequenza di commutazione effettiva rilevata dal filtro di uscita. Inoltre, questa topologia consente di ridurre lo stress di tensione sugli switch e di ridurre al minimo le dimensioni dei componenti passivi, mantenendo al contempo la semplicità del rapporto di conversione di un Buck. Tuttavia, il 3LBC introduce nuove sfide per i progettisti, come il bilanciamento e la stabilità della FC. Studi recenti hanno dimostrato che il controllo di corrente può essere applicato efficacemente al 3LBC senza compromettere la stabilità della FC. Tuttavia, l'implementazione di sistemi di controllo basati sulla corrente richiede un rilevamento accurato della corrente, che può risultare impraticabile a causa del costo degli amplificatori a larga banda, delle perdite di potenza introdotte dai componenti di rilevamento e delle difficoltà di integrazione. Questa tesi mira a risolvere i problemi sopra menzionati sviluppando e implementando un osservatore di corrente progettato per il 3LBC, considerando anche i requisiti di stabilità per la FC. Il primo obiettivo di questo lavoro è analizzare il 3LBC nelle sue condizioni di funzionamento a regime stazionario e a piccolo segnale. Successivamente, l'algoritmo dell'osservatore viene introdotto e adattato specificamente al 3LBC, ottenendo una complessità hardware minima ed un semplice filtro digitale IIR. È stato affrontato il bilanciamento della Capacità Flottante: senza componenti aggiuntivi, è possibile stabilizzare e bilanciare la FC. Le tecniche e le metodologie proposte sono rigorosamente validate attraverso modelli di simulazione, che incorporano effetti parassiti e non idealità circuitali, e un prototipo sperimentale. L'efficacia dell'osservatore di corrente è dimostrata sfruttando la corrente stimata all'interno di un sistema a doppio anello e per implementare un controllo predittivo.
Observer-Based Digital Control for Three-Level Flying Capacitor Buck Converter
ZECCHINATO, ALEX
2024/2025
Abstract
As the demand for compact, energy-efficient power management solutions grows, traditional DC-DC converter topologies face new challenges. The Three-Level Buck converter (3LBC), especially in its Flying Capacitor (FC) variant, emerges as a promising alternative to conventional step-down architectures. By introducing an intermediate voltage level through a FC, the 3LBC topology inherently doubles the effective switching frequency seen by the output filter. Moreover, this topology allows the reduction of voltage stress across switches and minimizes the size of passive components, while maintaining the simplicity of a Buck-like voltage conversion ratio. However, the 3LBC introduces new challenges for designers, such as the balancing and stability of the FC. Recent studies have demonstrated that Current-Mode control can be effectively applied to 3LBC without compromising the stability of the FC. However, implementing current control loops typically requires accurate current sensing, which can be impractical due to the cost of high-bandwidth amplifiers, power losses introduced by sensing components and integration difficulties. This thesis aims to solve the aforementioned issues by developing and implementing a current observer designed for the 3LBC, considering the stability requirements for the FC as well. The first objective of this work is to analyze the 3LBC in its steady-state and small-signal working conditions. Then, the observer algorithm is introduced and tailored for the 3LBC, resulting in reduced hardware complexity and a simple IIR digital filter. Flying Capacitor balancing has been addressed: with no additional components, it’s possible to stabilize and balance the FC. The proposed techniques and methodologies are rigorously validated through both simulation models, incorporating parasitic effects and circuit non-idealities, and experimental prototype. The current observer's effectiveness is demonstrated by leveraging the estimated current within a dual-loop architecture and deploying predictive control.| File | Dimensione | Formato | |
|---|---|---|---|
|
Zecchinato_Alex.pdf
embargo fino al 06/10/2026
Dimensione
21.94 MB
Formato
Adobe PDF
|
21.94 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/93429