This thesis presents an in-depth analysis of the ultrasonic surgical device Oscar Pro™, developed by Orthofix® Srl, focusing on its performance in the selective cutting of bone tissue and the removal of bone cement—operations that are fundamental in numerous orthopedic and maxillofacial procedures. The study is set within the broader context of technological innovation in surgery, aiming to enhance the precision and safety of interventions while minimizing damage to surrounding soft tissues and reducing procedural invasiveness. Unlike traditional instruments such as oscillating saws, burs, and drills—which are limited by their invasiveness, the risk of soft-tissue injury, and excessive frictional heat generation—Oscar Pro™ employs high-frequency ultrasonic vibrations to deliver mechanical energy to dedicated surgical probes, ensuring a more targeted and less traumatic action. The system consists of a generator with a user interface, two handpieces containing a piezoelectric transducer that converts electrical energy into mechanical vibrations, and a set of interchangeable probes designed for different operative functions, including bone cutting and bone-cement removal. A critical aspect of this technology, examined in this thesis, is the heat generated by the device, which can affect both the piezoelectric transducer and the cutting site, particularly during prolonged use. The research was carried out in collaboration with the Research and Development (R&D) department of Orthofix® and unfolded in three main phases. First, a numerical analysis was performed using 3D CAD modeling (SolidWorks) and FEM simulations (Ansys) to study the dynamic behavior of probes with different geometries and to identify configurations capable of maintaining strong mechanical performance—defined in terms of vibrational stability, energy-transfer efficiency, and potential cutting speed. Next, controlled thermal tests were conducted to monitor the temperature rise in the piezoelectric transducer during realistic operating cycles, defined as alternating activation and pause sequences that simulate typical surgical use. Finally, experimental trials were carried out on synthetic models (Sawbones®) and bovine bone tissue to analyze the temperature generated at the cutting site and to compare the results with numerical simulations. The data obtained from simulations and numerical analyses highlighted how an appropriate probe-geometry design can reduce bone-tissue overheating without compromising cutting efficiency. Further experimental tests were performed by modifying the geometry and materials of the piezoelectric transducer. These results provide promising design insights to increase the transducer’s thermal stability, thereby extending activation time during surgical procedures. In addition, ten new probes were designed—based on feedback from clinical users—for uncemented prosthesis removal and bone cutting, and their performance was experimentally validated. Finally, the potential application of a carbon-based Diamond-Like Carbon (DLC) coating was evaluated to reduce probe wear during use. This work has therefore improved the overall performance of the current device by enhancing the probes and expanding their range, enabling more precise and less invasive surgical procedures.
La presente tesi propone un’analisi approfondita del funzionamento del dispositivo chirurgico a ultrasuoni Oscar Pro™, sviluppato da Orthofix® Srl, e delle sue prestazioni nel taglio selettivo del tessuto osseo e nella rimozione del cemento osseo, operazioni fondamentali in numerosi interventi di chirurgia ortopedica e maxillo-facciale. Lo studio si colloca nel più ampio contesto dell’innovazione tecnologica in ambito chirurgico, con l’obiettivo di migliorare la precisione e la sicurezza degli interventi, riducendo al minimo i danni ai tessuti molli circostanti e l’invasività delle procedure. A differenza degli strumenti tradizionali, come seghe oscillanti, frese e trapani, che presentano limiti legati all’invasività, al rischio di lesioni ai tessuti molli e alla generazione eccessiva di calore per attrito, Oscar Pro™ utilizza vibrazioni ultrasoniche ad alta frequenza per trasmettere energia meccanica a specifiche probes chirurgiche, garantendo un’azione più mirata e meno traumatica. Il sistema è composto da un generatore dotato di interfaccia per l’utente, da due manipoli all’interno dei quali è presente un trasduttore piezoelettrico responsabile della conversione dell’energia elettrica in vibrazioni meccaniche, e da un set di probe intercambiabili progettate per differenti funzioni operative, come il taglio osseo o la rimozione del cemento osseo. Uno degli aspetti critici di questa tecnologia, analizzato in questa tesi, è la generazione di calore da parte del dispositivo, che può interessare sia la zona del trasduttore piezoelettrico sia il sito di taglio, specialmente durante un utilizzo prolungato. L’attività di tesi, svolta in collaborazione con il reparto Ricerca e Sviluppo (R&D) di Orthofix®, si è articolata in tre fasi principali. In primo luogo, è stata condotta un’analisi numerica tramite modellazione CAD 3D (Solidworks) e simulazioni FEM (Ansys) per studiare il comportamento dinamico delle probes con diverse geometrie, e identificare configurazioni in grado di mantenere buone prestazioni meccaniche, intese come stabilità vibrazionale, efficienza di trasmissione dell’energia e potenziale velocità di taglio. Successivamente, sono stati condotti test termici controllati per monitorare l’aumento di temperatura nel trasduttore piezoelettrico durante cicli di utilizzo realistici, definiti come sequenze di attivazione e pausa alternate che simulano l’uso tipico del dispositivo in ambito chirurgico. Infine, sono state condotte prove sperimentali su modelli sintetici (Sawbones®) e su tessuto osseo animale (bovino), con l’obiettivo di analizzare la temperatura generata nella zona di taglio e confrontare i risultati con le simulazioni numeriche. I dati raccolti attraverso simulazioni e analisi numeriche hanno evidenziato come un’opportuna progettazione della geometria della probe possa contribuire a una riduzione del surriscaldamento del tessuto osseo, senza compromettere l’efficacia del taglio. Inoltre, sono state condotte delle prove sperimentali, modificando la geometria e i materiali del trasduttore piezoelettrico. Questi risultati offrono spunti progettuali promettenti per incrementare la stabilità del trasduttore rispetto al fenomeno del surriscaldamento, potendo in tal modo prolungare il tempo di attivazione durante l’intervento. Sono state inoltre progettate 10 nuove probes per la rimozione delle protesi non cementate e il taglio osseo, a partire dagli input raccolti da alcuni utilizzatori, verificandone sperimentalmente il funzionamento. Infine è stato valutato l’aggiunta di un rivestimento Diamond-Like-Carbon (DLC) a base di carbonio per ridurre l’usura delle probe durante il loro utilizzo. Questo studio ha permesso pertanto di migliorare le prestazioni dell’attuale dispositivo grazie ad un miglioramento delle probe ed ampliandone la gamma per poter effettuare procedure più precise e meno invasive.
Analisi ed ottimizzazione delle performance di un dispositivo medicale a ultrasuoni per la rimozione di protesi e il taglio osseo
NICOLETTI, LORENZO
2024/2025
Abstract
This thesis presents an in-depth analysis of the ultrasonic surgical device Oscar Pro™, developed by Orthofix® Srl, focusing on its performance in the selective cutting of bone tissue and the removal of bone cement—operations that are fundamental in numerous orthopedic and maxillofacial procedures. The study is set within the broader context of technological innovation in surgery, aiming to enhance the precision and safety of interventions while minimizing damage to surrounding soft tissues and reducing procedural invasiveness. Unlike traditional instruments such as oscillating saws, burs, and drills—which are limited by their invasiveness, the risk of soft-tissue injury, and excessive frictional heat generation—Oscar Pro™ employs high-frequency ultrasonic vibrations to deliver mechanical energy to dedicated surgical probes, ensuring a more targeted and less traumatic action. The system consists of a generator with a user interface, two handpieces containing a piezoelectric transducer that converts electrical energy into mechanical vibrations, and a set of interchangeable probes designed for different operative functions, including bone cutting and bone-cement removal. A critical aspect of this technology, examined in this thesis, is the heat generated by the device, which can affect both the piezoelectric transducer and the cutting site, particularly during prolonged use. The research was carried out in collaboration with the Research and Development (R&D) department of Orthofix® and unfolded in three main phases. First, a numerical analysis was performed using 3D CAD modeling (SolidWorks) and FEM simulations (Ansys) to study the dynamic behavior of probes with different geometries and to identify configurations capable of maintaining strong mechanical performance—defined in terms of vibrational stability, energy-transfer efficiency, and potential cutting speed. Next, controlled thermal tests were conducted to monitor the temperature rise in the piezoelectric transducer during realistic operating cycles, defined as alternating activation and pause sequences that simulate typical surgical use. Finally, experimental trials were carried out on synthetic models (Sawbones®) and bovine bone tissue to analyze the temperature generated at the cutting site and to compare the results with numerical simulations. The data obtained from simulations and numerical analyses highlighted how an appropriate probe-geometry design can reduce bone-tissue overheating without compromising cutting efficiency. Further experimental tests were performed by modifying the geometry and materials of the piezoelectric transducer. These results provide promising design insights to increase the transducer’s thermal stability, thereby extending activation time during surgical procedures. In addition, ten new probes were designed—based on feedback from clinical users—for uncemented prosthesis removal and bone cutting, and their performance was experimentally validated. Finally, the potential application of a carbon-based Diamond-Like Carbon (DLC) coating was evaluated to reduce probe wear during use. This work has therefore improved the overall performance of the current device by enhancing the probes and expanding their range, enabling more precise and less invasive surgical procedures.| File | Dimensione | Formato | |
|---|---|---|---|
|
Nicoletti_Lorenzo.pdf
Accesso riservato
Dimensione
17.81 MB
Formato
Adobe PDF
|
17.81 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/93461