The reduction of the temperature required for the fabrication of glass components is essential in order to reduce the amount of energy and costs in the fabrication of transparent silica glass. The cold sintering process provide a new method that can assess this problem. Usually in this process a ceramic powder is wetted by a liquid phase which has the dual role of lubricant and dissolution agent. The powder is poured into the mould and normally a pressure between 200 and 500 MPa is applied on the powder, then temperature is risen at a temperature higher than the evaporation point of the solvent. In this thesis the powder is made of amorphous silica nanoparticles, of dimension around 15 nm, which were wetted by a solution of sodium hydroxide (2M) and they were tested considering different process parameters including pressure, temperature, amount of liquid phase and dwell time inside the mould. After being cold sintered, pellets were analysed through geometrical and apparent density in order to understand which are the main parameters that influence the process. The density results show that pressure is the main parameter that improve the final density of the powder. The pellets manufactured with this method were then analysed through different characterization techniques such as SEM, XRD, FT-IR. The formation of an amorphous material was confirmed by the XRD analysis showing a broad band centred at around 22°. The structure of the silica network was analysed through FT-IR spectroscopy and it was observed that there is a shift of the asymmetric and symmetric peak of Si-O-Si with the formation of a shoulder around 940 cm-1 connected to non-bridging oxygens. The samples were then analysed with SEM images of the cross section and it was noticed that samples with a higher thickness in comparison to the others show a more pronounce delamination effect.
La riduzione della temperatura richiesta per la fabbricazione di componenti in vetro è fondamentale per diminuire sia il consumo energetico sia i costi di produzione del vetro di silice trasparente. Il processo di cold sintering rappresenta un approccio promettente per affrontare questa problematica. In questo metodo, una polvere ceramica viene bagnata da una fase liquida che svolge un duplice ruolo: fungere da lubrificante e da agente di dissoluzione. La polvere bagnata viene quindi inserita in uno stampo e sottoposta a una pressione uniaxiale compresa tra 200 e 500 MPa. Successivamente, la temperatura viene aumentata fino a un valore superiore al punto di evaporazione del solvente. In questo studio sono state utilizzate nanoparticelle di silice amorfa con una dimensione media di circa 15 nm come materiale di partenza. La polvere è stata bagnata con una soluzione di idrossido di sodio (NaOH) 2 M ed è stata sottoposta a diverse condizioni di processo, variando parametri quali pressione, temperatura, quantità di fase liquida e tempo di mantenimento nello stampo. Dopo la sinterizzazione a freddo, le pastiglie ottenute sono state valutate in termini di densità geometrica e apparente, al fine di individuare i principali parametri che influenzano la densificazione. I risultati hanno mostrato che la pressione è il fattore più significativo nell’aumentare la densità finale del materiale. Le pastiglie realizzate sono state ulteriormente caratterizzate mediante microscopia elettronica a scansione (SEM), diffrazione a raggi X (XRD) e spettroscopia infrarossa in trasformata di Fourier (FT-IR). L’analisi XRD ha confermato la formazione di una struttura amorfa, evidenziando una banda larga centrata intorno a 22°. L’analisi FT-IR ha mostrato uno spostamento dei picchi di stiramento asimmetrico e simmetrico dei legami Si–O–Si, insieme alla comparsa di una spalla intorno a 940 cm⁻¹, associata alla presenza di ossigeni non ponte. Le immagini SEM delle sezioni trasversali hanno inoltre evidenziato che i campioni di maggiore spessore presentano un effetto di delaminazione più pronunciato rispetto a quelli più sottili.
Cold sintering of SiO2 nanopowder
FELTRIN, LEONARDO
2024/2025
Abstract
The reduction of the temperature required for the fabrication of glass components is essential in order to reduce the amount of energy and costs in the fabrication of transparent silica glass. The cold sintering process provide a new method that can assess this problem. Usually in this process a ceramic powder is wetted by a liquid phase which has the dual role of lubricant and dissolution agent. The powder is poured into the mould and normally a pressure between 200 and 500 MPa is applied on the powder, then temperature is risen at a temperature higher than the evaporation point of the solvent. In this thesis the powder is made of amorphous silica nanoparticles, of dimension around 15 nm, which were wetted by a solution of sodium hydroxide (2M) and they were tested considering different process parameters including pressure, temperature, amount of liquid phase and dwell time inside the mould. After being cold sintered, pellets were analysed through geometrical and apparent density in order to understand which are the main parameters that influence the process. The density results show that pressure is the main parameter that improve the final density of the powder. The pellets manufactured with this method were then analysed through different characterization techniques such as SEM, XRD, FT-IR. The formation of an amorphous material was confirmed by the XRD analysis showing a broad band centred at around 22°. The structure of the silica network was analysed through FT-IR spectroscopy and it was observed that there is a shift of the asymmetric and symmetric peak of Si-O-Si with the formation of a shoulder around 940 cm-1 connected to non-bridging oxygens. The samples were then analysed with SEM images of the cross section and it was noticed that samples with a higher thickness in comparison to the others show a more pronounce delamination effect.| File | Dimensione | Formato | |
|---|---|---|---|
|
Feltrin_Leonardo.pdf
accesso aperto
Dimensione
23.8 MB
Formato
Adobe PDF
|
23.8 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/93511