The processing of biological signals has become a crucial tool for translating the complexity of physiological processes into clinically meaningful information. Biomedical signals (electrical, biomechanical, or biochemical) are inherently nonlinear, variable, and noisy, and their interpretation is often challenged by low reproducibility, inter- and intra-subject variability, and the presence of artifacts. For a long time, analysis relied on expert visual inspection, a valuable but inevitably subjective and time-consuming process, prone to human error. Advances in computational methods have enabled a more objective, quantitative, and automatable approach, introducing techniques for preprocessing, feature extraction, and classification that can support clinical decision and identify subtle biomarkers not easily visible to the human eye. Within this context, the synergy between clinical evaluation and computational analysis emerges as a fundamental requirement to translate extracted features into clinically relevant biomarkers, ensuring that analysis does not remain confined to a purely mathematical level. Building on this premise, the thesis develops two main contributions. The first part presents a narrative review of consolidated approaches for the analysis of well-known physiological signals (EEG, ECG, EMG). Methods for preprocessing, for features analysis in time, frequency, time–frequency, and nonlinear domain, as well as features selection and classification strategies, are systematically reviewed. From this comparison, a set of general methodological principles is highlighted and translated into a flexible pipeline intended to guide the study of unexplored biological signals. The second part applies this pipeline to Fascia Gliding Graphia (FGG) signals, a newly acquired bio-signal derived from dynamic ultrasound and potentially useful in characterizing fascial gliding in patients with Low Back Pain. Following an anatomical and biomechanical overview of the fascial system, with a focus on the thoracolumbar fascia, the acquisition and analysis procedures of FGG signals are presented, including preprocessing, extraction of statistical and correlation indices, and preliminary evaluations. Results show the feasibility of quantitatively describing FGG signals, despite challenges related to signal variability, and suggest the presence of patterns that may carry clinical significance. Overall, the thesis proposes a methodological approach based upon consolidated signals knowledge (EEG, ECG, EMG) to design a pipeline for unexplored ones (FGG), demonstrating how the collaboration between clinical expertise and computational robustness is the key to transform raw data into potential biomarkers for the diagnosis and monitoring of musculoskeletal disorders.
L’elaborazione dei segnali biologici è divenuta uno strumento cruciale per tradurre la complessità dei processi fisiologici in informazioni clinicamente significative. I segnali biomedici (elettrici, biomeccanici o biochimici) sono intrinsecamente non lineari, variabili e rumorosi, e la loro interpretazione è spesso ostacolata da scarsa riproducibilità, variabilità inter- e intra-soggetto e presenza di artefatti. Per lungo tempo, l’analisi si è basata sull’ispezione visiva da parte dell’esperto, un processo prezioso ma inevitabilmente soggettivo, dispendioso in termini di tempo e suscettibile ad errori umani. I progressi nei metodi computazionali hanno reso possibile un approccio più oggettivo, quantitativo e automatizzabile, introducendo tecniche di pre-elaborazione, estrazione di feature e classificazione in grado di supportare la decisione clinica e di identificare biomarcatori nascosti, difficilmente rilevabili a occhio nudo. In questo contesto, la sinergia tra valutazione clinica e analisi computazionale emerge come requisito fondamentale per tradurre le features estratte in biomarcatori clinicamente rilevanti, garantendo che l’analisi non resti confinata a un livello puramente matematico. A partire da queste premesse, la tesi sviluppa due contributi principali. La prima parte presenta una revisiona narrativa degli approcci consolidati per l’analisi di segnali fisiologici noti (EEG, ECG, EMG). Vengono esaminati metodi di pre-elaborazione, di analisi delle features nei domini temporale, frequenziale, tempo–frequenza e non lineare, oltre a tecniche di selezione delle features e strategie di classificazione. Dal confronto emerge un insieme di principi metodologici generali, tradotti in una pipeline flessibile pensata per guidare lo studio di segnali biologici inesplorati. La seconda parte applica questa pipeline ai segnali di Fascia Gliding Graphia (FGG), un bio-segnale di nuova acquisizione derivato da ecografia dinamica e potenzialmente utile nella caratterizzazione dello scorrimento fasciale in pazienti con mal di schiena. Dopo una panoramica anatomica e biomeccanica del sistema fasciale, con particolare attenzione alla fascia toracolombare, vengono presentate le procedure di acquisizione e analisi dei segnali FGG, comprendenti pre-elaborazione, estrazione di indici statistici e di correlazione, e prime valutazioni preliminari. I risultati mostrano la fattibilità di una descrizione quantitativa dei segnali FGG, nonostante le sfide legate alla variabilità del dato, e suggeriscono la presenza di pattern potenzialmente significativi dal punto di vista clinico. Nel complesso, la tesi propone un approccio metodologico che parte dalla conoscenza di segnali consolidati (EEG, ECG, EMG) per costruire una pipeline applicabile a segnali inesplorati (FGG), dimostrando come la collaborazione tra competenza clinica e robustezza computazionale sia la chiave per trasformare dati grezzi in potenziali biomarcatori utili alla diagnosi e al monitoraggio dei disordini muscoloscheletrici.
Review and Practical Pipeline Design for Physiological Signals: From EEG/ECG/EMG to Ultrasound-Derived Fascia Gliding
PRINCI, MARIACHIARA
2024/2025
Abstract
The processing of biological signals has become a crucial tool for translating the complexity of physiological processes into clinically meaningful information. Biomedical signals (electrical, biomechanical, or biochemical) are inherently nonlinear, variable, and noisy, and their interpretation is often challenged by low reproducibility, inter- and intra-subject variability, and the presence of artifacts. For a long time, analysis relied on expert visual inspection, a valuable but inevitably subjective and time-consuming process, prone to human error. Advances in computational methods have enabled a more objective, quantitative, and automatable approach, introducing techniques for preprocessing, feature extraction, and classification that can support clinical decision and identify subtle biomarkers not easily visible to the human eye. Within this context, the synergy between clinical evaluation and computational analysis emerges as a fundamental requirement to translate extracted features into clinically relevant biomarkers, ensuring that analysis does not remain confined to a purely mathematical level. Building on this premise, the thesis develops two main contributions. The first part presents a narrative review of consolidated approaches for the analysis of well-known physiological signals (EEG, ECG, EMG). Methods for preprocessing, for features analysis in time, frequency, time–frequency, and nonlinear domain, as well as features selection and classification strategies, are systematically reviewed. From this comparison, a set of general methodological principles is highlighted and translated into a flexible pipeline intended to guide the study of unexplored biological signals. The second part applies this pipeline to Fascia Gliding Graphia (FGG) signals, a newly acquired bio-signal derived from dynamic ultrasound and potentially useful in characterizing fascial gliding in patients with Low Back Pain. Following an anatomical and biomechanical overview of the fascial system, with a focus on the thoracolumbar fascia, the acquisition and analysis procedures of FGG signals are presented, including preprocessing, extraction of statistical and correlation indices, and preliminary evaluations. Results show the feasibility of quantitatively describing FGG signals, despite challenges related to signal variability, and suggest the presence of patterns that may carry clinical significance. Overall, the thesis proposes a methodological approach based upon consolidated signals knowledge (EEG, ECG, EMG) to design a pipeline for unexplored ones (FGG), demonstrating how the collaboration between clinical expertise and computational robustness is the key to transform raw data into potential biomarkers for the diagnosis and monitoring of musculoskeletal disorders.| File | Dimensione | Formato | |
|---|---|---|---|
|
Princi_Mariachiara.pdf
accesso aperto
Dimensione
4.57 MB
Formato
Adobe PDF
|
4.57 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/93675