This thesis focuses on the development of StudIApp, an intelligent platform for university-level tutoring in STEM subjects, with a specific case study on Calculus I. The main objective is to design, implement, and validate an adaptive system capable of personalizing the learning experience based on student behavior and performance. The work involves defining a scalable software architecture, developing algorithms for personalized learning paths, and analyzing data collected during user interactions with the platform. The methodology follows an iterative Design Science Research approach and includes both quantitative and qualitative tools to evaluate the system’s effectiveness. The ultimate goal is to demonstrate how an adaptive digital tutoring system can significantly enhance student performance and provide a sustainable, scalable solution within the education technology landscape.

La tesi si concentra sullo sviluppo di StudIApp, una piattaforma intelligente per il tutoring universitario nelle materie STEM, con particolare attenzione all’Analisi Matematica I come caso studio. L’obiettivo principale è progettare, implementare e validare un sistema adattivo in grado di personalizzare l’esperienza di apprendimento sulla base del comportamento e delle performance dello studente. Il lavoro prevede la definizione di un’architettura software scalabile, lo sviluppo di algoritmi per la personalizzazione del percorso formativo e l’analisi dei dati raccolti durante l’interazione con la piattaforma. La metodologia adottata si basa su un approccio iterativo di tipo Design Science Research e include strumenti quantitativi e qualitativi per la valutazione dell’efficacia. L’obiettivo finale è dimostrare come un sistema di tutoring digitale adattivo possa contribuire in modo significativo al miglioramento delle performance degli studenti e offrire una soluzione sostenibile e scalabile nel panorama dell’education technology.

Implementazione di un sistema adattivo per l'interfaccia Studente-IA, il caso StudIApp

MUSIO, MARCO
2024/2025

Abstract

This thesis focuses on the development of StudIApp, an intelligent platform for university-level tutoring in STEM subjects, with a specific case study on Calculus I. The main objective is to design, implement, and validate an adaptive system capable of personalizing the learning experience based on student behavior and performance. The work involves defining a scalable software architecture, developing algorithms for personalized learning paths, and analyzing data collected during user interactions with the platform. The methodology follows an iterative Design Science Research approach and includes both quantitative and qualitative tools to evaluate the system’s effectiveness. The ultimate goal is to demonstrate how an adaptive digital tutoring system can significantly enhance student performance and provide a sustainable, scalable solution within the education technology landscape.
2024
Implementation of an Adaptive System for the Student-AI Interface: The StudIApp Case
La tesi si concentra sullo sviluppo di StudIApp, una piattaforma intelligente per il tutoring universitario nelle materie STEM, con particolare attenzione all’Analisi Matematica I come caso studio. L’obiettivo principale è progettare, implementare e validare un sistema adattivo in grado di personalizzare l’esperienza di apprendimento sulla base del comportamento e delle performance dello studente. Il lavoro prevede la definizione di un’architettura software scalabile, lo sviluppo di algoritmi per la personalizzazione del percorso formativo e l’analisi dei dati raccolti durante l’interazione con la piattaforma. La metodologia adottata si basa su un approccio iterativo di tipo Design Science Research e include strumenti quantitativi e qualitativi per la valutazione dell’efficacia. L’obiettivo finale è dimostrare come un sistema di tutoring digitale adattivo possa contribuire in modo significativo al miglioramento delle performance degli studenti e offrire una soluzione sostenibile e scalabile nel panorama dell’education technology.
IA
Tutoring
EdTech
Scalabilità
Personalizzazione
File in questo prodotto:
File Dimensione Formato  
Musio_Marco.pdf

Accesso riservato

Dimensione 2.77 MB
Formato Adobe PDF
2.77 MB Adobe PDF

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/93736