The Ti-6Al-4V alloy is widely employed in dental implantology due to its excellent mechanical properties, biocompatibility, and corrosion resistance. However, the oral environment exposes the material to aggressive conditions, including pH fluctuations and the presence of fluorides, which may compromise the stability of the protective titanium oxide film. This work investigates the corrosion behavior of Ti-6Al-4V samples manufactured by Laser Powder Bed Fusion (LPBF), focusing on the influence of porosity and fluoride concentration in artificial saliva. Electrochemical tests, including potentiodynamic and potentiostatic polarization, were combined with morphological analyses performed through optical microscopy (OM) and scanning electron microscopy (SEM). The results showed that the interaction between fluoride ions and protons leads to the formation of hydrofluoric acid (HF), which locally decreases the pH, destabilizing the passive oxide layer and promoting its dissolution. This mechanism enhanced corrosion phenomena, with the occurrence of pitting and surface degradation becoming more pronounced as fluoride concentration increased. Importantly, the comparative analysis of low- and high-porosity samples did not reveal a simple correlation between porosity and corrosion resistance: in some conditions, highly porous samples exhibited greater susceptibility, while in others low-porosity samples performed similarly or even better. Microscopic observations confirmed that pores, surface roughness, and defects created by the LPBF process act as preferential sites for corrosion initiation, but their effect is strongly dependent on the chemical environment. Overall, the findings indicate that corrosion resistance in Ti-6Al-4V is governed by the combined effects of porosity, microstructural features, and the chemical aggressiveness of the environment, rather than by porosity alone. This study contributes to a deeper understanding of fluoride-induced corrosion mechanisms in additively manufactured titanium materials and highlights the importance of optimizing both LPBF process parameters and clinical conditions to ensure long-term durability and safety of dental implants.
La lega Ti-6Al-4V è ampiamente impiegata in implantologia dentale grazie alle sue eccellenti proprietà meccaniche, alla biocompatibilità e alla resistenza alla corrosione. Tuttavia, l’ambiente orale espone il materiale a condizioni aggressive, tra cui fluttuazioni del pH e presenza di fluoruri, che possono compromettere la stabilità del film protettivo di ossido di titanio. Questo lavoro indaga il comportamento a corrosione di campioni di Ti-6Al-4V prodotti mediante tecnologia additiva Laser Powder Bed Fusion (LPBF), con particolare attenzione all’influenza della porosità e della concentrazione di fluoruri in saliva artificiale. Sono state eseguite prove elettrochimiche, tra cui polarizzazione potenziodinamica e potenziostatica, combinate con analisi morfologiche condotte tramite microscopia ottica (OM) e microscopia elettronica a scansione (SEM). I risultati hanno mostrato che l’interazione tra ioni fluoruro e protoni porta alla formazione di acido fluoridrico (HF), che riduce localmente il pH, destabilizzando lo strato passivo e favorendone la dissoluzione. Questo meccanismo intensifica i fenomeni corrosivi, con comparsa di pitting e degrado superficiale più marcati all’aumentare della concentrazione di fluoruri. È importante sottolineare che l’analisi comparativa tra campioni a bassa e alta porosità non ha evidenziato una correlazione semplice tra porosità e resistenza alla corrosione: in alcune condizioni i campioni ad alta porosità hanno mostrato maggiore suscettibilità, mentre in altre i campioni a bassa porosità hanno presentato prestazioni simili o persino migliori. Le osservazioni microscopiche hanno confermato che pori, rugosità superficiale e difetti generati dal processo LPBF costituiscono siti preferenziali per l’innesco della corrosione, ma il loro effetto dipende fortemente dall’ambiente chimico. In conclusione, i risultati indicano che la resistenza alla corrosione del Ti-6Al-4V è governata dalla combinazione di porosità, caratteristiche microstrutturali e aggressività chimica dell’ambiente, piuttosto che dalla sola porosità. Questo studio contribuisce a una comprensione più approfondita dei meccanismi di corrosione indotta dai fluoruri nei materiali in titanio prodotti per via additiva e sottolinea l’importanza di ottimizzare sia i parametri del processo LPBF sia le condizioni cliniche per garantire la durabilità e la sicurezza a lungo termine degli impianti dentali.
Influenza della porosità sulle proprietà di resistenza a corrosione di una lega TI-6Al-4V ottenuta mediante LPBF in fluidi corporei artificiali
SOLINAS, ELENA
2024/2025
Abstract
The Ti-6Al-4V alloy is widely employed in dental implantology due to its excellent mechanical properties, biocompatibility, and corrosion resistance. However, the oral environment exposes the material to aggressive conditions, including pH fluctuations and the presence of fluorides, which may compromise the stability of the protective titanium oxide film. This work investigates the corrosion behavior of Ti-6Al-4V samples manufactured by Laser Powder Bed Fusion (LPBF), focusing on the influence of porosity and fluoride concentration in artificial saliva. Electrochemical tests, including potentiodynamic and potentiostatic polarization, were combined with morphological analyses performed through optical microscopy (OM) and scanning electron microscopy (SEM). The results showed that the interaction between fluoride ions and protons leads to the formation of hydrofluoric acid (HF), which locally decreases the pH, destabilizing the passive oxide layer and promoting its dissolution. This mechanism enhanced corrosion phenomena, with the occurrence of pitting and surface degradation becoming more pronounced as fluoride concentration increased. Importantly, the comparative analysis of low- and high-porosity samples did not reveal a simple correlation between porosity and corrosion resistance: in some conditions, highly porous samples exhibited greater susceptibility, while in others low-porosity samples performed similarly or even better. Microscopic observations confirmed that pores, surface roughness, and defects created by the LPBF process act as preferential sites for corrosion initiation, but their effect is strongly dependent on the chemical environment. Overall, the findings indicate that corrosion resistance in Ti-6Al-4V is governed by the combined effects of porosity, microstructural features, and the chemical aggressiveness of the environment, rather than by porosity alone. This study contributes to a deeper understanding of fluoride-induced corrosion mechanisms in additively manufactured titanium materials and highlights the importance of optimizing both LPBF process parameters and clinical conditions to ensure long-term durability and safety of dental implants.| File | Dimensione | Formato | |
|---|---|---|---|
|
Solinas_Elena.pdf
embargo fino al 11/04/2027
Dimensione
6.09 MB
Formato
Adobe PDF
|
6.09 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/94114