This thesis focuses on the study of silicon heterojunction (SHJ) solar cells through a combination of electrical and optical characterization techniques and accelerated stress testing. The experimental activity included baseline measurements using current–voltage (I–V) characterization under illumination, External Quantum Efficiency (EQE) analysis, and Laser Beam Induced Current (LBIC) mapping to assess device performance and spatial uniformity. Two specific stress protocols were then applied to selected samples: a thermal shock test, involving repeated rapid temperature cycling between -40 and +85 °C, and an induced crack test, designed to simulate and analyze the effects of mechanical damage. The purpose of these stress tests was to monitor the time‑dependent evolution of the LBIC profile after mechanical damage, thereby linking structural degradation to changes in local electrical response.
Questa tesi si concentra sullo studio delle celle solari in silicio ad eterogiunzione (SHJ) attraverso una combinazione di tecniche di caratterizzazione elettriche e ottiche e prove di stress accelerato. L’attività sperimentale ha incluso misure di base mediante caratterizzazione corrente–tensione (I–V) sotto illuminazione, analisi dell’Efficienza Quantica Esterna (EQE) e mappatura della Corrente Indotta da Fascio Laser (LBIC), al fine di valutare le prestazioni del dispositivo e la sua uniformità spaziale. Sono stati quindi applicati due specifici protocolli di stress a campioni selezionati: un test di shock termico, consistente in cicli rapidi e ripetuti di temperatura compresi tra –40 e +85 °C, e un test di frattura indotta, progettato per simulare e analizzare gli effetti del danneggiamento meccanico. Lo scopo di questi test è stato quello di monitorare l’evoluzione temporale del profilo LBIC a seguito di danno meccanico, mettendo così in relazione il degrado strutturale con le variazioni della risposta elettrica locale.
Investigating Current Losses in SHJ Solar Cells After Thermal Cycling and Edge Cutting Due to Cracking
GUGLIELMI, NICOLO'
2024/2025
Abstract
This thesis focuses on the study of silicon heterojunction (SHJ) solar cells through a combination of electrical and optical characterization techniques and accelerated stress testing. The experimental activity included baseline measurements using current–voltage (I–V) characterization under illumination, External Quantum Efficiency (EQE) analysis, and Laser Beam Induced Current (LBIC) mapping to assess device performance and spatial uniformity. Two specific stress protocols were then applied to selected samples: a thermal shock test, involving repeated rapid temperature cycling between -40 and +85 °C, and an induced crack test, designed to simulate and analyze the effects of mechanical damage. The purpose of these stress tests was to monitor the time‑dependent evolution of the LBIC profile after mechanical damage, thereby linking structural degradation to changes in local electrical response.| File | Dimensione | Formato | |
|---|---|---|---|
|
Guglielmi_Nicolo.pdf
Accesso riservato
Dimensione
37.93 MB
Formato
Adobe PDF
|
37.93 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/94123