The formation of neural networks is a fundamental process in the development of the central nervous system and underlies cognitive, sensory and motor functions. However, the brain’s limited regenerative capacity and the complexity of synaptic connections make it extremely challenging to restore damaged neural circuits, such as those affected by cortical injury. In this context, the development of in vitro platforms capable of supporting axonal growth and functional connectivity between human brain models represents a central challenge in neuroscience, regenerative medicine and tissue engineering. In this thesis, a three-dimensional platform based on engineered, photosensitive hydrogels was designed to support axonal extension from human brain organoids and promote the controlled formation of neural connections. The system utilizes hyaluronic acid and polyethylene glycol matrices that mimic the mechanical and biochemical properties of brain tissue, within which microstructures were decrosslinked via two-photon microscopy to provide topographical guidance for axonal growth. Following an initial phase of geometric optimization, a configuration featuring high-density arrays of micrometric channels was developed. The platform was biologically validated through integration with brain organoids, demonstrating biocompatibility, support for cell viability and the ability to induce axonal extension in response to both biochemical signals and topographical cues. Although some optimization is still required to improve the robustness and complexity of the resulting networks, the developed system represents a significant advancement over traditional 2D models, providing a valuable tool for studying axon guidance mechanisms and for future applications in the in vitro modelling of human neural circuits.
La formazione delle reti neurali rappresenta un processo fondamentale nello sviluppo del sistema nervoso centrale, alla base di funzioni cognitive, sensoriali e motorie. Tuttavia, la limitata capacità rigenerativa del cervello e la complessità delle connessioni sinaptiche rendono estremamente difficile ripristinare circuiti neurali danneggiati, come in seguito a lesioni corticali. In questo contesto, lo sviluppo di piattaforme in vitro capaci di supportare la crescita assonale e la connettività funzionale tra modelli cerebrali umani costituisce una sfida centrale per le neuroscienze, la medicina rigenerativa e l’ingegneria tissutale. In questa tesi è stata progettata una piattaforma tridimensionale basata su hydrogel fotosensibili e ingegnerizzati per supportare l’estensione assonale da organoidi cerebrali umani e favorire la formazione controllata di connessioni neurali. Il sistema sfrutta matrici di acido ialuronico e polietilenglicole che mimano le proprietà meccaniche e biochimiche del tessuto cerebrale, al cui interno sono state realizzate microstrutture decrosslinkate tramite microscopia a due fotoni, in grado di guidare topograficamente la crescita degli assoni. Dopo una fase iniziale di ottimizzazione geometrica, è stata realizzata una configurazione caratterizzata da array ad alta densità di canali micrometrici. La piattaforma è stata validata biologicamente attraverso l’integrazione con organoidi, dimostrando biocompatibilità, supporto alla vitalità e capacità di indurre estensione assonale in risposta sia a segnali biochimici che a stimoli topografici. Sebbene sia necessaria un’ulteriore ottimizzazione per aumentare robustezza e complessità delle reti formate, il sistema sviluppato rappresenta un avanzamento significativo rispetto ai modelli 2D tradizionali, offrendo un valido strumento per lo studio dei meccanismi di guida assonale e per future applicazioni nella modellazione in vitro di circuiti neurali umani.
Developing Hyaluronan 3D Photo-patterned Hydrogels for Engineering Neuronal Connections in Human Brain Model
SARTOR, GABRIELA
2024/2025
Abstract
The formation of neural networks is a fundamental process in the development of the central nervous system and underlies cognitive, sensory and motor functions. However, the brain’s limited regenerative capacity and the complexity of synaptic connections make it extremely challenging to restore damaged neural circuits, such as those affected by cortical injury. In this context, the development of in vitro platforms capable of supporting axonal growth and functional connectivity between human brain models represents a central challenge in neuroscience, regenerative medicine and tissue engineering. In this thesis, a three-dimensional platform based on engineered, photosensitive hydrogels was designed to support axonal extension from human brain organoids and promote the controlled formation of neural connections. The system utilizes hyaluronic acid and polyethylene glycol matrices that mimic the mechanical and biochemical properties of brain tissue, within which microstructures were decrosslinked via two-photon microscopy to provide topographical guidance for axonal growth. Following an initial phase of geometric optimization, a configuration featuring high-density arrays of micrometric channels was developed. The platform was biologically validated through integration with brain organoids, demonstrating biocompatibility, support for cell viability and the ability to induce axonal extension in response to both biochemical signals and topographical cues. Although some optimization is still required to improve the robustness and complexity of the resulting networks, the developed system represents a significant advancement over traditional 2D models, providing a valuable tool for studying axon guidance mechanisms and for future applications in the in vitro modelling of human neural circuits.| File | Dimensione | Formato | |
|---|---|---|---|
|
Sartor_Gabriela.pdf
embargo fino al 12/10/2028
Dimensione
4.92 MB
Formato
Adobe PDF
|
4.92 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/94126