Bone regeneration remains a major challenge in biomedical engineering, particularly in cases complicated by bacterial infections and antimicrobial resistance (AMR). The aim of this thesis was to develop and characterize innovative antimicrobial polypeptide (ε-polylysine (ε-PL)) loaded hydroxyapatite (HAp) nanoparticles (ε-PL-loaded HAp) as a multifunctional biomaterial for bone tissue regeneration. Pure HAp nanoparticles were synthesized via wet chemical precipitation and subsequently functionalized with ε-PL in two different mass ratios (10% and 20%), using three alternative incorporation strategies (addition to the alkaline aqueous solution, to the acidic aqueous solution or to synthesis suspension). The resulting ε-PL-loaded HAp samples were characterized through Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS), Brunauer–Emmett–Teller (BET) surface analysis, and Scanning Transmission Electron Microscopy (STEM). Antibacterial activity was assessed against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by broth dilution and CFU quantification, while release studies were conducted via Mass Spectrometry (MS) to evaluate ε-PL release kinetics. The results demonstrate that ε-PL incorporation introduces the antibacterial properties of HAp nanoparticles, with the effect observed in the ε-PL-loaded HAp samples where ε-PL was added to the alkaline aq. solution and to the acidic aq. solution during HAp synthesis. In particular, these formulations achieved a marked reduction of E. coli growth after 24 h, while the effect against S. aureus was less pronounced for the sample with 20% of ε-PL. Release studies confirmed that ε-PL-loaded HAp samples also displayed the most favorable kinetic profile, with an initial burst release of ε-PL followed by a sustained release phase, especially in the 20% ε-PL condition. This combination of targeted antibacterial action and controlled lysine release underscores the dual functionality of ε-PL-loaded HAp as antimicrobial and bioactive biomaterials. Overall, this preliminary study highlights the potential of ε-PL-loaded HAp nanoparticles for bone tissue engineering. Their future integration into hydrogel systems represents a promising approach to achieve minimally invasive treatments that support bone regeneration while reducing infection risks.
La rigenerazione ossea rimane una sfida importante nell'ingegneria biomedica, in particolare nei casi complicati da infezioni batteriche e resistenza antimicrobica (AMR). Lo scopo di questa tesi è stato quello di sviluppare e caratterizzare innovative nanoparticelle (ε-PL-loaded HAp) di idrossiapatite (HAp) caricate con polipeptide antimicrobico (ε-polilisina (ε-PL)) come biomateriale multifunzionale per la rigenerazione del tessuto osseo. Le nanoparticelle di HAp puro sono state sintetizzate tramite “wet chemical precipitation” e successivamente funzionalizzate con ε-PL in due diversi rapporti di massa (10% e 20%), utilizzando tre strategie di incorporazione alternative (aggiunta alla soluzione acquosa alcalina, alla soluzione acquosa acida o alla sospensione di sintesi). I campioni di HAp caricati con ε-PL risultanti sono stati caratterizzati mediante Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS), analisi di superficie di Brunauer-Emmett-Teller (BET) e Scanning Transmission Electron Microscopy (STEM). L'attività antibatterica è stata valutata contro Escherichia coli (E. coli) e Staphylococcus aureus (S. aureus) mediante diluizione in brodo e quantificazione di UFC, mentre gli studi di rilascio sono stati condotti tramite spettrometria di massa (MS) per valutare la cinetica di rilascio di ε-PL. I risultati dimostrano che l'incorporazione di ε-PL conferisce proprietà antibatteriche alle nanoparticelle di HAp, con effetti osservabili nei campioni di ε-PL-loaded HAp in cui ε-PL è stato aggiunto alla soluzione acquosa alcalina e alla soluzione acquosa acida durante la sintesi dell'HAp. In particolare, queste formulazioni hanno ottenuto una marcata riduzione della crescita di E. coli dopo 24 ore, mentre l'effetto contro S. aureus è stato meno pronunciato per il campione con il 20% di ε-PL. Gli studi di rilascio hanno confermato che i campioni di HAp caricati con ε-PL hanno anche mostrato il profilo cinetico più favorevole, con un rilascio iniziale di ε-PL seguito da una fase di rilascio sostenuta, specialmente nella condizione di ε-PL del 20%. Questa combinazione di azione antibatterica mirata e rilascio controllato di lisina sottolinea la doppia funzionalità dell'HAp caricato con ε-PL come biomateriali antimicrobici e bioattivi. Nel complesso, questo studio preliminare evidenzia il potenziale delle nanoparticelle di HAp caricate con ε-PL per l'ingegneria del tessuto osseo. La loro futura integrazione nei sistemi di hydrogel rappresenta un approccio promettente per ottenere trattamenti minimamente invasivi che supportano la rigenerazione ossea riducendo al contempo i rischi di infezione.
Antimicrobial composite Hydrogel for Bone Regeneration: a preliminary study using Polylysine and Hydroxyapatite
GRITTI, SAMUEL
2024/2025
Abstract
Bone regeneration remains a major challenge in biomedical engineering, particularly in cases complicated by bacterial infections and antimicrobial resistance (AMR). The aim of this thesis was to develop and characterize innovative antimicrobial polypeptide (ε-polylysine (ε-PL)) loaded hydroxyapatite (HAp) nanoparticles (ε-PL-loaded HAp) as a multifunctional biomaterial for bone tissue regeneration. Pure HAp nanoparticles were synthesized via wet chemical precipitation and subsequently functionalized with ε-PL in two different mass ratios (10% and 20%), using three alternative incorporation strategies (addition to the alkaline aqueous solution, to the acidic aqueous solution or to synthesis suspension). The resulting ε-PL-loaded HAp samples were characterized through Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS), Brunauer–Emmett–Teller (BET) surface analysis, and Scanning Transmission Electron Microscopy (STEM). Antibacterial activity was assessed against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by broth dilution and CFU quantification, while release studies were conducted via Mass Spectrometry (MS) to evaluate ε-PL release kinetics. The results demonstrate that ε-PL incorporation introduces the antibacterial properties of HAp nanoparticles, with the effect observed in the ε-PL-loaded HAp samples where ε-PL was added to the alkaline aq. solution and to the acidic aq. solution during HAp synthesis. In particular, these formulations achieved a marked reduction of E. coli growth after 24 h, while the effect against S. aureus was less pronounced for the sample with 20% of ε-PL. Release studies confirmed that ε-PL-loaded HAp samples also displayed the most favorable kinetic profile, with an initial burst release of ε-PL followed by a sustained release phase, especially in the 20% ε-PL condition. This combination of targeted antibacterial action and controlled lysine release underscores the dual functionality of ε-PL-loaded HAp as antimicrobial and bioactive biomaterials. Overall, this preliminary study highlights the potential of ε-PL-loaded HAp nanoparticles for bone tissue engineering. Their future integration into hydrogel systems represents a promising approach to achieve minimally invasive treatments that support bone regeneration while reducing infection risks.| File | Dimensione | Formato | |
|---|---|---|---|
|
Gritti_Samuel.pdf
Accesso riservato
Dimensione
3.86 MB
Formato
Adobe PDF
|
3.86 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/94141