The growing global demand for Rare Earth Elements (REEs) has stimulated interest in potential extraterrestrial sources, with the Moon emerging as a primary candidate. This thesis presents the detailed design of the optical section of an innovative instrument intended for a lunar lander, whose goal is to map the distribution of REEs on the lunar surface. The instrument architecture is based on a multispectral dual-camera (stereo) system designed to provide a four-dimensional (4D) mapping of the terrain: three spatial dimensions, obtained through binocular stereoscopic reconstruction, and one spectral dimension, crucial for the analysis of mineralogical composition. Spectroscopic analysis is achieved through the integration of a Linear Variable Filter (LVF) in each optical path, enabling the identification of spectral signatures specific to REE-bearing minerals such as monazite and xenotime, with a focus on the spectral range between 400 nm and 900 nm. The optical design, developed and optimized in Zemax OpticStudio, was conceived as a multi-configuration system employing a movable optical group to ensure optimal, near-diffraction-limited performance over a wide range of object distances, from 2 meters to infinity. The final configuration was extensively validated through standard analyses including Spot Diagram, Modulation Transfer Function (MTF), and Encircled Energy. Finally, a rigorous tolerance analysis was carried out to define achievable manufacturing specifications, assessing whether the degradation of system performance due to fabrication and assembly variations remains within acceptable limits critical for the lunar mission.
La crescente domanda globale di Elementi delle Terre Rare (REEs) ha stimolato l'interesse verso potenziali fonti extra-terrestri, con la Luna che emerge come un candidato primario. Questa tesi presenta la progettazione dettagliata della sezione ottica di un innovativo strumento destinato a un lander lunare, il cui obiettivo è mappare la distribuzione dei REEs sulla superficie lunare. L'architettura dello strumento si basa su un sistema di doppia telecamera (stereo) multispettrale, progettato per fornire una mappatura quadridimensionale (4D) del terreno: tre dimensioni spaziali, ottenute mediante ricostruzione stereoscopica binoculare, e una dimensione spettrale, cruciale per l'analisi della composizione mineralogica. L'analisi spettroscopica è realizzata attraverso l'integrazione di un Filtro a Variabile Lineare (LVF) in ciascun percorso ottico, consentendo l'identificazione delle firme spettrali specifiche di minerali contenenti REEs come la monazite e la xenotime, con un focus sul range spettrale tra 400 nm e 900 nm. Il progetto ottico, sviluppato e ottimizzato in Zemax Opticstudio, è stato concepito come una multi-configurazione che impiega un gruppo ottico mobile per garantire prestazioni ottimali, prossime al limite di diffrazione, su un'ampia gamma di distanze oggetto, da 2 metri all'infinito. La configurazione finale è stata ampiamente validata attraverso le analisi standard di Spot Diagram, Funzione di Trasferimento della Modulazione (MTF) e Energia Racchiusa. Infine, è stata eseguita una rigorosa analisi di tolleranza per definire specifiche di produzione realizzabili, valutando se la degradazione delle prestazioni del sistema, dovuta a variazioni di fabbricazione e montaggio, si mantenga entro margini di accettabilità critici per la missione lunare.
Progetto ottico di una camera stereo multispettrale per un rover lunare
FIORINO, GIANLUCA
2024/2025
Abstract
The growing global demand for Rare Earth Elements (REEs) has stimulated interest in potential extraterrestrial sources, with the Moon emerging as a primary candidate. This thesis presents the detailed design of the optical section of an innovative instrument intended for a lunar lander, whose goal is to map the distribution of REEs on the lunar surface. The instrument architecture is based on a multispectral dual-camera (stereo) system designed to provide a four-dimensional (4D) mapping of the terrain: three spatial dimensions, obtained through binocular stereoscopic reconstruction, and one spectral dimension, crucial for the analysis of mineralogical composition. Spectroscopic analysis is achieved through the integration of a Linear Variable Filter (LVF) in each optical path, enabling the identification of spectral signatures specific to REE-bearing minerals such as monazite and xenotime, with a focus on the spectral range between 400 nm and 900 nm. The optical design, developed and optimized in Zemax OpticStudio, was conceived as a multi-configuration system employing a movable optical group to ensure optimal, near-diffraction-limited performance over a wide range of object distances, from 2 meters to infinity. The final configuration was extensively validated through standard analyses including Spot Diagram, Modulation Transfer Function (MTF), and Encircled Energy. Finally, a rigorous tolerance analysis was carried out to define achievable manufacturing specifications, assessing whether the degradation of system performance due to fabrication and assembly variations remains within acceptable limits critical for the lunar mission.| File | Dimensione | Formato | |
|---|---|---|---|
|
Fiorino_Gianluca.pdf
accesso aperto
Dimensione
6.19 MB
Formato
Adobe PDF
|
6.19 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/94275