This thesis deals with the mechanical-structural design and FEM validation of a non-conventional optical path, developed within the framework of a pioneering experiment for the observation of pulsars in the optical domain. The ultimate goal of the project is to assess the technological feasibility of using small, compact telescopes as observational units for autonomous deep-space triangulation systems, based on the periodic signal of pulsars. The optical system under study has been integrated onto a commercial after-market telescope, while the innovative aspect lies in the architecture of the secondary optical path, specifically designed to separate and channel different components of the light signal. In particular, a holed optical element tilted at 45° enables the spatial discrimination between the central light emitted by the pulsar and the diffuse light from the surrounding nebula: the axial component, more intense and point-like, continues straight and is collected by a SPAD (Single Photon Avalanche Diode) detector with high temporal resolution; the lateral component, weaker and diffused, is reflected towards a wide-angle camera intended for pointing and contextual imaging. The thesis work focuses on the structural modeling of the optical support system, aimed at ensuring the precise alignment of the optical axes and the mechanical robustness of the setup during observational operations. Through a finite element model developed in MSC Patran/Nastran, static and modal analyses were carried out to verify the overall mechanical functionality.
Questa tesi tratta la progettazione meccanico-strutturale e la validazione FEM di un cammino ottico non convenzionale, sviluppato nell’ambito di un esperimento pionieristico per l’osservazione di pulsar nel dominio ottico. L’obiettivo ultimo del progetto è valutare la fattibilità tecnologica di impiegare piccoli telescopi compatti come unità osservative per sistemi di triangolazione autonoma nello spazio profondo, basati sul segnale periodico delle pulsar. Il sistema ottico oggetto di studio è stato integrato su un telescopio commerciale after-market, mentre la parte innovativa risiede nell’architettura del cammino ottico secondario, progettato ad hoc per separare e convogliare diverse componenti del segnale luminoso. In particolare, un elemento ottico forato e inclinato a 45° consente la discriminazione spaziale tra la luce centrale emessa dalla pulsar e quella diffusa dalla nebulosa circostante: la componente assiale, più intensa e puntiforme, prosegue in linea retta e viene raccolta da un rivelatore SPAD (Single Photon Avalanche Diode), ad alta risoluzione temporale; la componente laterale, più debole e diffusa, viene riflessa verso una camera grandangolare destinata al puntamento e alla visuale di contesto. Il lavoro di tesi si concentra sulla modellazione strutturale del sistema di supporto ottico, volto a garantire l’allineamento preciso degli assi ottici e la robustezza meccanica del setup durante le operazioni osservative. Tramite un modello agli elementi finiti sviluppato in MSC Patran/Nastran, si sono condotte analisi statiche, e modali al fine di verificare la funzionalità meccanica generale.
Prototipo di sistema ottico per navigazione satellitare tramite pulsar ottiche: modello e validazione FEM
SOSO, DENIS
2024/2025
Abstract
This thesis deals with the mechanical-structural design and FEM validation of a non-conventional optical path, developed within the framework of a pioneering experiment for the observation of pulsars in the optical domain. The ultimate goal of the project is to assess the technological feasibility of using small, compact telescopes as observational units for autonomous deep-space triangulation systems, based on the periodic signal of pulsars. The optical system under study has been integrated onto a commercial after-market telescope, while the innovative aspect lies in the architecture of the secondary optical path, specifically designed to separate and channel different components of the light signal. In particular, a holed optical element tilted at 45° enables the spatial discrimination between the central light emitted by the pulsar and the diffuse light from the surrounding nebula: the axial component, more intense and point-like, continues straight and is collected by a SPAD (Single Photon Avalanche Diode) detector with high temporal resolution; the lateral component, weaker and diffused, is reflected towards a wide-angle camera intended for pointing and contextual imaging. The thesis work focuses on the structural modeling of the optical support system, aimed at ensuring the precise alignment of the optical axes and the mechanical robustness of the setup during observational operations. Through a finite element model developed in MSC Patran/Nastran, static and modal analyses were carried out to verify the overall mechanical functionality.| File | Dimensione | Formato | |
|---|---|---|---|
|
TESI_PULSAR_Ringraziamenti.pdf
Accesso riservato
Dimensione
16.08 MB
Formato
Adobe PDF
|
16.08 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/94281