This thesis investigates the application of generative artificial intelligence techniques to analyze, interpret, and generate music through the lens of emotion. By leveraging state-of-the-art machine learning models—most notably large-scale language models adapted for musical data and neural architectures such as Variational Autoencoders (VAEs) the study aims to capture subtle emotional cues that are embedded within musical compositions.

Questa tesi indaga l'applicazione di tecniche di intelligenza artificiale generativa per analizzare, interpretare e generare musica attraverso la lente dell'emozione. Sfruttando modelli di apprendimento automatico all'avanguardia, in particolare modelli linguistici su larga scala adattati per dati musicali e architetture neurali come i Variational Autoencoders (VAE), lo studio mira a catturare sottili segnali emotivi che sono incorporati nelle composizioni musicali.

Emotional Music Analysis using Generative AI

YANOĞLU, MELTEM
2024/2025

Abstract

This thesis investigates the application of generative artificial intelligence techniques to analyze, interpret, and generate music through the lens of emotion. By leveraging state-of-the-art machine learning models—most notably large-scale language models adapted for musical data and neural architectures such as Variational Autoencoders (VAEs) the study aims to capture subtle emotional cues that are embedded within musical compositions.
2024
Emotional Music Analysis using Generative AI
Questa tesi indaga l'applicazione di tecniche di intelligenza artificiale generativa per analizzare, interpretare e generare musica attraverso la lente dell'emozione. Sfruttando modelli di apprendimento automatico all'avanguardia, in particolare modelli linguistici su larga scala adattati per dati musicali e architetture neurali come i Variational Autoencoders (VAE), lo studio mira a catturare sottili segnali emotivi che sono incorporati nelle composizioni musicali.
Emotional Music
Generative AI
Deep Learning
Data Analysis
File in questo prodotto:
File Dimensione Formato  
Yanoglu_Meltem.pdf

accesso aperto

Dimensione 3.92 MB
Formato Adobe PDF
3.92 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/94419