The prediction of the failure modes of structural components is a fundamental requirement in modern space applications, most of all with the recent introduction of reusable launch systems. The classical finite elements numerical techniques, based on Classical Continuum Mechanics (CCM), present a lot of limitations when it comes to modeling discontinuities such as cracks. Peridynamics theory (PD), a non-local extension of CCM, allows to overcome these limitations thanks to a mathematical formulation based on integral equations which allow to model long-range interactions and the autonomous evolution of damage. The most used approach to solve PD problems is a Meshfree Method (MM) based on one-point Gaussian quadrature and it is characterized by high computational costs. The recent introduction of the Fast Convolution Based Method (FCBM), which exploits the convolutional structure of PD equations to apply Fast Fourier Transform algorithm, has allowed an important reduction of the computational time. However, this requires the re-formulation of the damage propagation model: while in MM the propagation takes place through bond breakage, in FCBM it is described by the removal of nodes with a consequent loss of accuracy, particularly in presence of crack branching phenomena. In the present thesis work, a new coupled model (Hybrid PD) between classical PD and FCBM is proposed with the aim to reduce the computational cost and, at the same time, obtain results compatible with the ones of MM. The presented coupling is based on the subdivision of the computational domain into two regions, limiting the application of PD to nodes close to the discontinuity (MM region) and analyzing the remaining ones through FCBM (FC region). In addition, a dynamic extension method (adaptivity) of the MM region based on the nodal strain energy density is presented: the MM region is progressively extended to zones interested by nucleation and propagation of crack, reducing the computational time. The method has been developed for both the bond-based and (ordinary) state-based formulations and it has been verified through lot of numerical tests of 2D wave propagation and crack propagation and 3D crack propagation, showing how, in presence of a noticeable reduction of computational time, the loss of accuracy is very low.
La previsione delle modalità di fallimento dei componenti strutturali è un requisito fondamentale nelle moderne applicazioni spaziali, soprattutto con la recente introduzione di sistemi di lancio riutilizzabili. Le tecniche numeriche classiche agli elementi finiti, basate sulla Meccanica Classica del Continuo (CCM), presentano numerose limitazioni nella modellazione delle discontinuità come le fratture. La teoria Peridynamics (PD), una estensione non-locale della CCM, consente di ovviare a questo problema grazie ad una formulazione matematica basata su equazioni integrali che consentono di modellare interazioni a lungo raggio e l'evoluzione autonoma del danno. L'approccio numerico più diffuso per la risoluzione di problemi PD è un Metodo Mesh-free (MM) basato sulla quadratura di Gauss ad un punto ed è caratterizzato da un costo computazionale particolarmente elevato. La recente introduzione del Fast Convolution Based Method (FCBM), che sfrutta la struttura convoluzionale delle equazioni PD per consentire l'applicazione della Fast Fourier Transform, ha consentito una notevole riduzione dei tempi di calcolo. Tuttavia, ciò richiede una riformulazione del modello di propagazione del danno: mentre nel MM la propagazione avviene tramite la rottura dei bond, nel FCBM essa viene descritta dalla rimozione dei nodi con una conseguente perdita di accuratezza soprattutto in presenza di fenomeni di ramificazione della frattura. Nel presente lavoro di tesi, viene proposto un modello accoppiato (Hybrid PD) tra MM e FCBM con l'obbiettivo di ridurre i tempi di calcolo e, allo stesso tempo, ottenere risultati compatibili con quelli del MM. L'accoppiamento presentato prevede la suddivisione del dominio del problema in due regioni limitando l'applicazione del MM ai nodi in prossimità della discontinuità (regione MM) e analizzando i nodi rimanenti tramite il FCBM (regione FC). Viene, inoltre, presentato un metodo di estensione dinamica (adattività) della regione MM basato sulla densità di energia di deformazione nodale: la regione MM viene progressivamente estesa alle zone di nucleazione e accrescimento della cricca, riducendo ulteriormente i tempi di calcolo. Il metodo è stato sviluppato per la formulazione bond-based e (ordinary) state-based ed è stato verificato tramite numerosi test numerici di Wave Propagation e Crack Propagation in 2D e test numerici di Crack Propagation in 3D dimostrando come, a fronte di una notevole riduzione dei tempi di calcolo, la perdita in termini di accuratezza sia minima.
Sviluppo di un nuovo approccio ibrido per l’impiego del fast convolution-based method in peridinamica
GALEAZZO, SEBASTIANO
2024/2025
Abstract
The prediction of the failure modes of structural components is a fundamental requirement in modern space applications, most of all with the recent introduction of reusable launch systems. The classical finite elements numerical techniques, based on Classical Continuum Mechanics (CCM), present a lot of limitations when it comes to modeling discontinuities such as cracks. Peridynamics theory (PD), a non-local extension of CCM, allows to overcome these limitations thanks to a mathematical formulation based on integral equations which allow to model long-range interactions and the autonomous evolution of damage. The most used approach to solve PD problems is a Meshfree Method (MM) based on one-point Gaussian quadrature and it is characterized by high computational costs. The recent introduction of the Fast Convolution Based Method (FCBM), which exploits the convolutional structure of PD equations to apply Fast Fourier Transform algorithm, has allowed an important reduction of the computational time. However, this requires the re-formulation of the damage propagation model: while in MM the propagation takes place through bond breakage, in FCBM it is described by the removal of nodes with a consequent loss of accuracy, particularly in presence of crack branching phenomena. In the present thesis work, a new coupled model (Hybrid PD) between classical PD and FCBM is proposed with the aim to reduce the computational cost and, at the same time, obtain results compatible with the ones of MM. The presented coupling is based on the subdivision of the computational domain into two regions, limiting the application of PD to nodes close to the discontinuity (MM region) and analyzing the remaining ones through FCBM (FC region). In addition, a dynamic extension method (adaptivity) of the MM region based on the nodal strain energy density is presented: the MM region is progressively extended to zones interested by nucleation and propagation of crack, reducing the computational time. The method has been developed for both the bond-based and (ordinary) state-based formulations and it has been verified through lot of numerical tests of 2D wave propagation and crack propagation and 3D crack propagation, showing how, in presence of a noticeable reduction of computational time, the loss of accuracy is very low.| File | Dimensione | Formato | |
|---|---|---|---|
|
Galeazzo_Sebastiano.pdf
embargo fino al 18/04/2027
Dimensione
19.99 MB
Formato
Adobe PDF
|
19.99 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/94640