This thesis investigates the interaction between an incoming flow and a wavy surface. The analysis is framed within the classical wind–wave interaction theories, which describe the mechanisms of momentum and energy transfer from the atmosphere to the ocean and form the basis for understanding wave growth and modulation. To accurately represent the air–sea interface, the Signed Distance Function (SDF) method was employed, providing a robust and flexible description of the wavy surface within the computational domain. Simulations were carried out using the Large Eddy Simulation (LES) methodology, which directly resolves the largest turbulent structures while modeling the effects of the smaller scales, thus ensuring a realistic representation of instabilities and energy exchange processes. The results revealed a clear progression: from a regular and stable regime at zero incidence, to an intermediate configuration characterized by stronger gradients and streamline deviations, up to a complex and unstable regime at higher angles, with the emergence of recirculation zones and coherent structures. These findings highlight the crucial role of the incidence angle in shaping the flow dynamics above a wavy surface and provide an interpretative framework for the study of complex atmospheric phenomena. In particular, the results may contribute to improving numerical models of Medicanes (Mediterranean Hurricanes), where air–sea exchange processes and wind-induced instabilities play a key role in the genesis and development of such events.
Il presente lavoro di tesi affronta lo studio dell’interazione tra un flusso incidente e una superficie ondosa. L’analisi si inserisce nel quadro delle teorie classiche sull’interazione onda–vento, che descrivono i meccanismi di trasferimento di quantità di moto e di energia dall’atmosfera al mare e che costituiscono la base per la comprensione della crescita e della modulazione delle onde superficiali. Per rappresentare in maniera accurata l’interfaccia aria–mare è stato adottato il metodo SDF (Signed Distance Function), che consente una descrizione robusta e flessibile della superficie ondosa all’interno del dominio computazionale. Le simulazioni sono state condotte utilizzando la metodologia LES (Large Eddy Simulation), che permette di risolvere direttamente le strutture turbolente di maggiori dimensioni e di modellare gli effetti delle scale più piccole, garantendo una rappresentazione fedele dei fenomeni di instabilità e di scambio energetico. I risultati hanno mostrato una progressione chiara: da un regime regolare e stabile a incidenza nulla, a una configurazione intermedia caratterizzata da gradienti più marcati e deviazioni delle linee di corrente, fino a un regime complesso e instabile per angoli elevati, con la comparsa di ricircoli e strutture coerenti. Queste osservazioni confermano il ruolo cruciale dell’angolo di incidenza nel modulare la dinamica del flusso sopra una superficie ondosa e forniscono una base interpretativa utile per lo studio di fenomeni atmosferici complessi. In particolare, i risultati possono contribuire al miglioramento dei modelli numerici dedicati ai Medicane (Mediterranean Hurricanes), nei quali i processi di scambio aria–mare e le instabilità generate dal vento giocano un ruolo determinante nella genesi e nell’evoluzione del fenomeno.
Simulazioni alla grandi scale modellate a parete di flussi turbolenti su superfici ondulate
VANZIN, ANGELA
2024/2025
Abstract
This thesis investigates the interaction between an incoming flow and a wavy surface. The analysis is framed within the classical wind–wave interaction theories, which describe the mechanisms of momentum and energy transfer from the atmosphere to the ocean and form the basis for understanding wave growth and modulation. To accurately represent the air–sea interface, the Signed Distance Function (SDF) method was employed, providing a robust and flexible description of the wavy surface within the computational domain. Simulations were carried out using the Large Eddy Simulation (LES) methodology, which directly resolves the largest turbulent structures while modeling the effects of the smaller scales, thus ensuring a realistic representation of instabilities and energy exchange processes. The results revealed a clear progression: from a regular and stable regime at zero incidence, to an intermediate configuration characterized by stronger gradients and streamline deviations, up to a complex and unstable regime at higher angles, with the emergence of recirculation zones and coherent structures. These findings highlight the crucial role of the incidence angle in shaping the flow dynamics above a wavy surface and provide an interpretative framework for the study of complex atmospheric phenomena. In particular, the results may contribute to improving numerical models of Medicanes (Mediterranean Hurricanes), where air–sea exchange processes and wind-induced instabilities play a key role in the genesis and development of such events.| File | Dimensione | Formato | |
|---|---|---|---|
|
Vanzin_Angela.pdf
Accesso riservato
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/94644