In recent years, the rapid development and production of biomedical data have led to an exponential increase in the volume of data generated daily. For researchers, clinicians, and scientists, analyzing this enormous amount of data quickly, accurately, and without losing context has become a significant challenge. While modern tools have been developed to address this issue, it remains a persistent problem. This thesis focuses on the development of a comprehensive knowledge base designed to explore and visualize the bidirectional relationship between the gut and brain, commonly known as the Gut-Brain Axis. The primary objective was to develop a biomedical knowledge graph that integrates various sources of scientific evidence into a complete and queryable system. To address this, we developed the Gut-Brain Ontology, where biomedical data were ingested, normalized, and represented using GraphDB as a triple store. This configuration allows the knowledge graph to be accessed through a web application. The platform lets users search for individuals, explore their relationships, and interact with detailed data visualizations. The development of the knowledge graph involved constructing SPARQL queries to retrieve and aggregate data from the repository, which is then presented through a web interface. This work demonstrates that building a semantic biomedical graph can improve precision, enabling effective aggregation and querying of biomedical data. The proposed system also offers a reusable framework for building similar knowledge systems in other domains of biomedicine.
Negli ultimi anni, il rapido sviluppo e la produzione di dati biomedici hanno portato a un incremento esponenziale del volume di informazioni generate quotidianamente. Per ricercatori e scienziati, analizzare quest'enorme quantità di dati in modo rapido, accurato e senza cambiare contesto è diventata una sfida significativa. Sebbene siano stati sviluppati dei sistemi moderni per affrontare questo problema, la questione rimane tuttora aperta. Questa tesi si concentra sullo sviluppo di una Knowledge Base progettata per esplorare e visualizzare la relazione bidirezionale tra intestino e cervello, comunemente nota come Gut-Brain Axis. L'obiettivo principale è stato quello di sviluppare un knowledge graph biomedico che integrasse diverse fonti scientifiche in un sistema completo e interrogabile. A tal fine, è stata sviluppata la Gut-Brain Ontology, in cui i dati biomedici sono stati acquisiti, normalizzati e rappresentati utilizzando GraphDB come triple store. Questa configurazione consente di accedere al knowledge graph tramite un'applicazione web. La piattaforma permette agli utenti di ricercare entità, esplorarne le relazioni e interagire con visualizzazioni dettagliate dei dati. Lo sviluppo del knowledge graph ha richiesto la costruzione di diverse query utilizzando SPARQL per il recupero e l'aggregazione dei dati dalla repository, successivamente presentati attraverso l’interfaccia web. Questo lavoro dimostra come la costruzione di un grafo biomedico possa migliorare la precisione, consentendo un'aggregazione e un'interrogazione più efficaci dei dati biomedici. Il sistema proposto offre inoltre un quadro riutilizzabile per la realizzazione di sistemi di conoscenza analoghi in altri ambiti della biomedicina.
Dal Knowledge Graph alla User Interaction: Modellazione Ontologica e Sviluppo di una Webapp per l'Interazione nell'Asse Intestino-Cervello.
PIRON, SAMUEL
2024/2025
Abstract
In recent years, the rapid development and production of biomedical data have led to an exponential increase in the volume of data generated daily. For researchers, clinicians, and scientists, analyzing this enormous amount of data quickly, accurately, and without losing context has become a significant challenge. While modern tools have been developed to address this issue, it remains a persistent problem. This thesis focuses on the development of a comprehensive knowledge base designed to explore and visualize the bidirectional relationship between the gut and brain, commonly known as the Gut-Brain Axis. The primary objective was to develop a biomedical knowledge graph that integrates various sources of scientific evidence into a complete and queryable system. To address this, we developed the Gut-Brain Ontology, where biomedical data were ingested, normalized, and represented using GraphDB as a triple store. This configuration allows the knowledge graph to be accessed through a web application. The platform lets users search for individuals, explore their relationships, and interact with detailed data visualizations. The development of the knowledge graph involved constructing SPARQL queries to retrieve and aggregate data from the repository, which is then presented through a web interface. This work demonstrates that building a semantic biomedical graph can improve precision, enabling effective aggregation and querying of biomedical data. The proposed system also offers a reusable framework for building similar knowledge systems in other domains of biomedicine.| File | Dimensione | Formato | |
|---|---|---|---|
|
Piron_Samuel.pdf
accesso aperto
Dimensione
3.77 MB
Formato
Adobe PDF
|
3.77 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/95453