The Material Point Method (MPM) is a hybrid Lagrangian–Eulerian particle-based numerical technique enabling efficient simulation of large deformations, soil–water interactions, and multiphysical phenomena generated by extreme events. This method has been used to simulate the impact of fluid and granular flows on rigid obstacles, with the goal of characterizing the time evolution of impact forces and determining their peak values. Validation was performed by comparing MPM results with laboratory experimental data and established numerical solvers. In addition to modeling fluid and granular materials, both two-dimensional and three-dimensional simulations were conducted to more faithfully capture the complex impact-front dynamics and true spatial propagation effects of the phenomenon. These analyses demonstrated that MPM accurately reproduces impact force–time histories, including peak magnitudes and impulse, by accounting for air pockets and solid inclusions within the flow. Result analysis shows that the method maintains numerical stability even under large deformations and kinematic discontinuities, thanks to automatic remeshing and robust contact algorithms. Consequently, MPM emerges as an advanced tool for studying impulsive phenomena, supporting quantitative risk assessment of extreme events and informing the design of mitigation strategies. Keywords: Material Point Method; extreme events; hydrodynamic loading; impact forces; KratosMultiphysics.
Il Material Point Method (MPM) è una tecnica numerica particellare ibrida lagrangiano–euleriana che consente di simulare efficacemente grandi deformazioni, interazioni suolo–acqua e fenomeni multi-fisici caratteristici di eventi estremi. Tale metodo è stato impiegato per la simulazione numerica dell’impatto di flussi fluidi e granulari su ostacoli rigidi, con l’obiettivo di caratterizzare l’evoluzione temporale delle forze d’impatto e determinarne il valore massimo. Per la validazione del metodo, i risultati ottenuti sono stati confrontati con dati sperimentali di laboratorio e con solutori numerici consolidati. In aggiunta alla modellazione di materiali fluidi e granulari, sono state condotte simulazioni sia bidimensionali che tridimensionali per catturare con maggiore fedeltà la complessa dinamica del fronte di impatto e gli effetti reali di propagazione del fenomeno. L’analisi dei risultati dimostra che il metodo garantisce stabilità numerica anche in presenza di grandi deformazioni e discontinuità cinematiche. Pertanto l’MPM si conferma uno strumento avanzato per lo studio di fenomeni impulsivi, offrendo un supporto alla valutazione del rischio da eventi estremi e alla definizione di strategie di mitigazione. Parole chiave: Material Point Method, eventi estremi, azione idrodinamica, forze d’impatto, KratosMultiphysics.
Valutazione numerica dell'azione idrodinamica su strutture tridimensionali durante eventi estremi: applicazione del Material Point Method
DE ZOTTI, GIOELE
2024/2025
Abstract
The Material Point Method (MPM) is a hybrid Lagrangian–Eulerian particle-based numerical technique enabling efficient simulation of large deformations, soil–water interactions, and multiphysical phenomena generated by extreme events. This method has been used to simulate the impact of fluid and granular flows on rigid obstacles, with the goal of characterizing the time evolution of impact forces and determining their peak values. Validation was performed by comparing MPM results with laboratory experimental data and established numerical solvers. In addition to modeling fluid and granular materials, both two-dimensional and three-dimensional simulations were conducted to more faithfully capture the complex impact-front dynamics and true spatial propagation effects of the phenomenon. These analyses demonstrated that MPM accurately reproduces impact force–time histories, including peak magnitudes and impulse, by accounting for air pockets and solid inclusions within the flow. Result analysis shows that the method maintains numerical stability even under large deformations and kinematic discontinuities, thanks to automatic remeshing and robust contact algorithms. Consequently, MPM emerges as an advanced tool for studying impulsive phenomena, supporting quantitative risk assessment of extreme events and informing the design of mitigation strategies. Keywords: Material Point Method; extreme events; hydrodynamic loading; impact forces; KratosMultiphysics.| File | Dimensione | Formato | |
|---|---|---|---|
|
DeZotti_Gioele.pdf
accesso aperto
Dimensione
20.06 MB
Formato
Adobe PDF
|
20.06 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/95498