The present thesis aims to develop a regional-scale hydrogeological model of the Venetian coastal aquifer system located south of the Venice Lagoon. Within the study domain, the classical equations governing the flow of a constant-density fluid in a three-dimensional porous medium were implemented and numerically solved using the Finite Difference Method, through the MODFLOW computational code and the MODELMUSE graphical interface. Using the MODELMUSE modules, appropriate boundary conditions were applied to represent the main rivers (Po, Brenta, Adige), the Venetian Lagoon, the Adriatic Sea, and the meteorological forcing due to precipitation and evapotranspiration. In addition to these natural components of the water balance, the area is characterized by a complex anthropogenic drainage system, consisting of a dense network of reclamation channels and ditches, as well as pumping stations that discharge excess water into the natural river network. This system plays a crucial role in ensuring the safety of the territory, since, in its absence, much of the land surface—located below mean sea level—would be submerged. The representation of this drainage system constitutes the central focus of the thesis. In the first modeling attempt, the drain condition was assigned to the main canal network; however, this configuration produced results inconsistent with the available field data and showed issues of numerical instability. This made it necessary to perform a second modeling approach, in which the drain condition was uniformly applied across the entire land surface. This configuration yielded groundwater table levels in good agreement with field measurements. Furthermore, the model was calibrated using available discharge data from the pumping stations. The adopted approach made it possible to represent the artificial contribution to the hydraulic safety of the area without explicitly modeling the detailed reclamation infrastructure, whose complexity would be unfeasible to reproduce at the model scale.
Il presente lavoro di tesi ha come obiettivo la modellazione idrogeologica, a scala regionale, del sistema acquifero costiero veneto situato a sud della laguna di Venezia. All’interno del dominio di interesse sono state implementate le equazioni classiche del flusso di un fluido a densità costante in un mezzo poroso tridimensionale, risolte numericamente mediante il Metodo delle Differenze Finite, attraverso l’utilizzo del codice di calcolo MODFLOW e dell’interfaccia grafica MODELMUSE. Tramite i moduli di MODELMUSE sono state applicate opportune condizioni al contorno al fine di rappresentare i principali corsi d’acqua (Po, Brenta, Adige), la Laguna Veneta, il Mare Adriatico e le forzanti meteorologiche di precipitazione ed evapotraspirazione. Oltre a questi contributi naturali del bilancio idrico, il territorio è caratterizzato da un complesso sistema di drenaggio di origine antropica, costituito da una fitta rete di canali e fossi di bonifica e da un sistema di idrovore che convoglia il surplus idrico verso i corsi d’acqua naturali. Tale sistema risulta fondamentale per la sicurezza del territorio, poiché, in sua assenza, gran parte della superficie topografica — ubicata al di sotto del livello medio del mare — risulterebbe sommersa. La rappresentazione di tale sistema costituisce il focus centrale della tesi. In una prima fase di modellazione, la condizione di tipo dreno è stata assegnata alla rete dei canali principali; tuttavia, tale configurazione ha prodotto risultati non coerenti con le misure disponibili e ha evidenziato problemi di instabilità numerica. Ciò ha reso necessaria una seconda modellazione, nella quale la condizione di dreno è stata applicata in modo uniforme sull’intera superficie della terraferma. Tale configurazione ha restituito risultati in termini di livelli della superficie freatica coerenti con i dati di campo. Inoltre, il modello è stato calibrato utilizzando i dati di portata estratta dagli impianti idrovori. L’approccio adottato ha consentito di rappresentare il contributo artificiale alla sicurezza idraulica del territorio senza dover riprodurre nel dettaglio le singole strutture e infrastrutture di bonifica, la cui complessità risulterebbe difficilmente rappresentabile alla scala del modello.
Modellazione quali-quantitativa del sistema acquifero costiero tra Brenta e Po (Italia).
PEDRON, AGNESE
2024/2025
Abstract
The present thesis aims to develop a regional-scale hydrogeological model of the Venetian coastal aquifer system located south of the Venice Lagoon. Within the study domain, the classical equations governing the flow of a constant-density fluid in a three-dimensional porous medium were implemented and numerically solved using the Finite Difference Method, through the MODFLOW computational code and the MODELMUSE graphical interface. Using the MODELMUSE modules, appropriate boundary conditions were applied to represent the main rivers (Po, Brenta, Adige), the Venetian Lagoon, the Adriatic Sea, and the meteorological forcing due to precipitation and evapotranspiration. In addition to these natural components of the water balance, the area is characterized by a complex anthropogenic drainage system, consisting of a dense network of reclamation channels and ditches, as well as pumping stations that discharge excess water into the natural river network. This system plays a crucial role in ensuring the safety of the territory, since, in its absence, much of the land surface—located below mean sea level—would be submerged. The representation of this drainage system constitutes the central focus of the thesis. In the first modeling attempt, the drain condition was assigned to the main canal network; however, this configuration produced results inconsistent with the available field data and showed issues of numerical instability. This made it necessary to perform a second modeling approach, in which the drain condition was uniformly applied across the entire land surface. This configuration yielded groundwater table levels in good agreement with field measurements. Furthermore, the model was calibrated using available discharge data from the pumping stations. The adopted approach made it possible to represent the artificial contribution to the hydraulic safety of the area without explicitly modeling the detailed reclamation infrastructure, whose complexity would be unfeasible to reproduce at the model scale.| File | Dimensione | Formato | |
|---|---|---|---|
|
Pedron_Agnese.pdf
accesso aperto
Dimensione
25.44 MB
Formato
Adobe PDF
|
25.44 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/95524