In this work, a constitutive analysis of the main soft connective tissues of the knee joint was performed using an inverse identification procedure applied to experimental data from the literature. The goal was to identify the constitutive parameters of each tissue by comparing four isotropic hyperelastic models—Neo-Hookean, Mooney–Rivlin, Fung–Demiray, and Ogden—in order to determine the most suitable formulation to describe their mechanical behavior. Parameter identification was carried out by minimizing an objective function, supported by numerical simulations of mechanical tests in ABAQUS, which reproduced the experimental conditions and optimized the fit between numerical curves and experimental data. For ligament and tendon tissues, identification relied exclusively on a hyperelastic formulation, deemed appropriate to describe the equilibrium mechanical response. For meniscal tissue, a two-stage approach was adopted: the thermodynamic equilibrium response was modeled with a hyperelastic formulation, while the viscoelastic component was represented by a Prony series calibrated from literature stress-relaxation curves. The identified parameters were then used to build a comprehensive numerical model of the knee joint in ABAQUS, aimed at simulating the principal joint motions of flexion and internal rotation. The results analysis focused on flexion, assessing the displacement field, principal stresses and strains, and the joint moment. This model provides a robust basis for future biomechanical studies, with potential applications in both clinical and engineering contexts.
In questo lavoro è stata condotta un’analisi costitutiva dei principali tessuti connettivi molli dell’articolazione del ginocchio mediante procedura di identificazione inversa applicata a dati sperimentali reperiti in letteratura. L’obiettivo è stato l’identificazione dei parametri costitutivi di ciascun tessuto, confrontando quattro modelli iperelastici isotropi, Neo-Hookeano, Mooney-Rivlin, Fung-Demiray e Ogden, al fine di individuare la formulazione più adatta a descriverne il comportamento meccanico. L’identificazione è stata effettuata mediante minimizzazione di una funzione obiettivo, integrata da simulazioni numeriche di prove meccaniche eseguite in ABAQUS, che hanno consentito di riprodurre le condizioni sperimentali e ottimizzare l’interpolazione tra le curve numeriche e i dati sperimentali. Per quanto riguarda i tessuti legamentosi e tendinei, l’identificazione è stata condotta utilizzando esclusivamente una formulazione iperelastica, ritenuta adeguata alla descrizione della risposta meccanica in condizioni di equilibrio. Per il tessuto meniscale si è adottato un approccio specifico a due fasi. La risposta di equilibrio termodinamico è stata modellata tramite una formulazione iperelastica. La componente viscoelastica è stata descritta mediante una serie di Prony, calibrata a partire da curve di stress relaxation disponibili in letteratura. I parametri identificati sono stati successivamente impiegati per la costruzione di un modello numerico completo dell’articolazione del ginocchio in ABAQUS, finalizzato alla simulazione dei principali movimenti articolari di flessione e rotazione interna. L’analisi dei risultati si è concentrata sul movimento di flessione, valutando il campo dello spostamento, delle tensioni e deformazioni principali e il momento articolare. Tale modello fornisce una base affidabile per studi biomeccanici futuri, con possibili applicazioni sia in ambito clinico che ingegneristico.
Analisi Costitutiva dei Tessuti Molli dell'Articolazione del Ginocchio: Identificazione Parametrica e Simulazioni Computazionali
DE FELICE, EMILIA
2024/2025
Abstract
In this work, a constitutive analysis of the main soft connective tissues of the knee joint was performed using an inverse identification procedure applied to experimental data from the literature. The goal was to identify the constitutive parameters of each tissue by comparing four isotropic hyperelastic models—Neo-Hookean, Mooney–Rivlin, Fung–Demiray, and Ogden—in order to determine the most suitable formulation to describe their mechanical behavior. Parameter identification was carried out by minimizing an objective function, supported by numerical simulations of mechanical tests in ABAQUS, which reproduced the experimental conditions and optimized the fit between numerical curves and experimental data. For ligament and tendon tissues, identification relied exclusively on a hyperelastic formulation, deemed appropriate to describe the equilibrium mechanical response. For meniscal tissue, a two-stage approach was adopted: the thermodynamic equilibrium response was modeled with a hyperelastic formulation, while the viscoelastic component was represented by a Prony series calibrated from literature stress-relaxation curves. The identified parameters were then used to build a comprehensive numerical model of the knee joint in ABAQUS, aimed at simulating the principal joint motions of flexion and internal rotation. The results analysis focused on flexion, assessing the displacement field, principal stresses and strains, and the joint moment. This model provides a robust basis for future biomechanical studies, with potential applications in both clinical and engineering contexts.| File | Dimensione | Formato | |
|---|---|---|---|
|
DeFelice_Emilia.pdf
accesso aperto
Dimensione
8.18 MB
Formato
Adobe PDF
|
8.18 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/95810