The shoulder joint represents one of the most complex anatomical structures in the human body, both from a structural and functional point of view, and is at the same time one of the most mobile. In this work, the development of a computational model of the shoulder joint is proposed through finite element analysis (FEM), with the aim of realistically simulating the mechanical response of the main soft tissues involved (ligaments and tendons) and the dynamics of physiological joint movements. After a brief introduction to the anatomy and biomechanics of the shoulder, necessary to contextualize the structures under analysis, the study focuses on the hyperelastic characterization of the tissues through the adoption of different constitutive models (Neo-Hookean, Mooney-Rivlin, Exponential and Ogden), implemented in MATLAB to perform the fitting of experimental data from tensile tests reported in the literature. For each tissue analyzed, the optimal constitutive parameters were identified by minimizing an appropriate cost function. Subsequently, the obtained parameters were used for FEM simulations of individual tendons and ligaments in order to validate them and, if necessary, adjust them. Validation was carried out by comparing the numerical simulation results obtained with Abaqus with experimental curves. In the last chapter, a complete model of the shoulder joint was developed, including bony components, ligaments, cartilage, and the main tendons, the latter represented by elastic connectors, with the aim of simulating abduction movement. The simulation showed a behavior consistent with the literature and allowed the observation of the evolution of deformation and stress fields in the different soft tissues of the joint. These simulations provide a tool for analyzing the mechanical behavior of the shoulder joint and lay the foundation for future developments.
L’articolazione della spalla rappresenta una delle strutture anatomiche più complesse del corpo umano sia da un punto di vista strutturale che funzionale, ed è al contempo una delle più mobili. In questo lavoro viene proposta la realizzazione di un modello computazionale dell’articolazione della spalla tramite analisi agli elementi finiti (FEM), con l’obiettivo di simulare in modo realistico la risposta meccanica dei principali tessuti molli coinvolti (legamenti e tendini) e la dinamica dei movimenti articolari fisiologici. Dopo una breve introduzione all’anatomia e biomeccanica della spalla, necessaria per inquadrare le strutture oggetto di analisi, il lavoro si concentra sulla caratterizzazione iperelastica dei tessuti mediante l’adozione di diversi modelli costitutivi (Neo-Hookeano, Mooney-Rivlin, Esponenziale e Ogden), implementati in ambiente MATLAB per eseguire il fitting di dati sperimentali provenienti da prove trazione presenti in letteratura. Per ciascun tessuto analizzato, sono stati identificati i parametri costitutivi ottimali tramite la minimizzazione di una adeguata funzione costo. Successivamente i parametri ottenuti sono statati utilizzati per simulazioni FEM relative ai singoli tendini e legamenti al fine di validarli ed eventualmente correggerli. La validazione è stata condotta confrontando i risultati delle simulazioni numeriche ottenute con Abaqus con le curve sperimentali. Nel capitolo conclusivo è stato realizzato un modello completo dell’articolazione della spalla, includendo componenti ossee, legamenti, cartilagini e i principali tendini, quest’ultimi rappresentati tramite connettori elastici, con lo scopo di simulare il movimento di abduzione. La simulazione ha mostrato un comportamento in accordo con la letteratura e ha permesso di osservare l’evoluzione dei campi di deformazione e di stress nei diversi tessuti molli dell'articolazione. Le simulazioni condotte offrono uno strumento per l’analisi del comportamento meccanico dell’articolazione della spalla e pongono le basi per futuri sviluppi applicativi.
Analisi costitutiva dei tessuti molli dell'articolazione della spalla: identificazione parametrica e simulazioni computazionali
PALMAVERDI, MARTINA
2024/2025
Abstract
The shoulder joint represents one of the most complex anatomical structures in the human body, both from a structural and functional point of view, and is at the same time one of the most mobile. In this work, the development of a computational model of the shoulder joint is proposed through finite element analysis (FEM), with the aim of realistically simulating the mechanical response of the main soft tissues involved (ligaments and tendons) and the dynamics of physiological joint movements. After a brief introduction to the anatomy and biomechanics of the shoulder, necessary to contextualize the structures under analysis, the study focuses on the hyperelastic characterization of the tissues through the adoption of different constitutive models (Neo-Hookean, Mooney-Rivlin, Exponential and Ogden), implemented in MATLAB to perform the fitting of experimental data from tensile tests reported in the literature. For each tissue analyzed, the optimal constitutive parameters were identified by minimizing an appropriate cost function. Subsequently, the obtained parameters were used for FEM simulations of individual tendons and ligaments in order to validate them and, if necessary, adjust them. Validation was carried out by comparing the numerical simulation results obtained with Abaqus with experimental curves. In the last chapter, a complete model of the shoulder joint was developed, including bony components, ligaments, cartilage, and the main tendons, the latter represented by elastic connectors, with the aim of simulating abduction movement. The simulation showed a behavior consistent with the literature and allowed the observation of the evolution of deformation and stress fields in the different soft tissues of the joint. These simulations provide a tool for analyzing the mechanical behavior of the shoulder joint and lay the foundation for future developments.| File | Dimensione | Formato | |
|---|---|---|---|
|
Palmaverdi_Martina.pdf
accesso aperto
Dimensione
16.2 MB
Formato
Adobe PDF
|
16.2 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/95817