In the cardiovascular and urological fields, it is often necessary to replace or reconstruct compromised vessels and hollow organs due to diseases, trauma, or congenital defects. Currently available prostheses, whether metallic, synthetic, or biological, present significant limitations in terms of durability, mechanical performance, reliability, and biocompatibility, sometimes compromising long-term clinical outcomes. Hybrid conduits represent an innovative approach to address these challenges. By combining decellularized biological tissues with synthetic polymers, hybrid constructs aim at integrating the mechanical strength and durability of the polymer with the biological and physiological properties of the natural tissue. This combination has the potential to overcome the drawbacks of traditional prostheses, creating a versatile platform for customized biomedical applications. This thesis focuses on the fabrication and preliminary functional characterization of hybrid conduits made from decellularized porcine pericardium (DPP) and small intestinal submucosa (SIS), coupled with the synthetic polymer Chronoflex AR. The study concentrated on developing standardized experimental protocols for the evaluation of the conduits’ hydrodynamic and mechanical properties, including the implementation of an experimental apparatus capable of reproducing para-physiological conditions and a workflow for quantitative image analysis of the conduits. This approach provides a solid methodological foundation for future studies aimed at optimizing conduit design, improving manufacturing processes, and supporting the clinical translation of hybrid constructs. Ultimately, this research seeks to contribute to the development of innovative, reliable, and biocompatible solutions for cardiovascular and urological interventions, while providing a robust methodological framework for the subsequent optimization and standardization of hybrid conduits.
In ambito cardiovascolare e urologico, è spesso necessario sostituire o ricostruire vasi e organi cavi compromessi a causa di malattie, traumi o difetti congeniti. Le protesi attualmente disponibili, siano esse metalliche, sintetiche o biologiche, presentano notevoli limitazioni in termini di durabilità, prestazioni meccaniche, affidabilità e biocompatibilità, compromettendo talvolta i risultati clinici a lungo termine. I condotti ibridi rappresentano un approccio innovativo volto a superare tali criticità. combinando tessuti biologici decellularizzati con polimeri sintetici, questi costrutti mirano a unire la resistenza meccanica e la durabilità del materiale polimerico con le proprietà biologiche e fisiologiche del tessuto naturale. Tale sinergia consente di creare dispositivi capaci di adattarsi meglio all’ambiente fisiologico, riducendo le reazioni avverse e migliorando l’integrazione tissutale. La presente tesi si concentra sulla fabbricazione e sulla caratterizzazione funzionale preliminare di condotti ibridi ottenuti da pericardio suino decellularizzato (DPP) e sottomucosa intestinale suina (SIS), combinati con il polimero sintetico Chronoflex AR. Lo studio ha previsto lo sviluppo di protocolli sperimentali standardizzati per la valutazione delle proprietà idrodinamiche e meccaniche, includendo la progettazione di un apparato in grado di riprodurre condizioni para-fisiologiche e un workflow per l’analisi quantitativa delle immagini. Questo lavoro pone le basi per futuri studi volti a ottimizzare il design e i processi di fabbricazione dei condotti, supportando la loro traduzione clinica. In definitiva, la ricerca contribuisce allo sviluppo di soluzioni innovative, affidabili e biocompatibili per applicazioni cardiovascolari e urologiche, fornendo al contempo un solido riferimento metodologico per la successiva ottimizzazione e standardizzazione dei condotti ibridi.
Preliminary functional assessment of hybrid conduits for biomedical applications
EBANIETTI, GIOMBATTISTA
2024/2025
Abstract
In the cardiovascular and urological fields, it is often necessary to replace or reconstruct compromised vessels and hollow organs due to diseases, trauma, or congenital defects. Currently available prostheses, whether metallic, synthetic, or biological, present significant limitations in terms of durability, mechanical performance, reliability, and biocompatibility, sometimes compromising long-term clinical outcomes. Hybrid conduits represent an innovative approach to address these challenges. By combining decellularized biological tissues with synthetic polymers, hybrid constructs aim at integrating the mechanical strength and durability of the polymer with the biological and physiological properties of the natural tissue. This combination has the potential to overcome the drawbacks of traditional prostheses, creating a versatile platform for customized biomedical applications. This thesis focuses on the fabrication and preliminary functional characterization of hybrid conduits made from decellularized porcine pericardium (DPP) and small intestinal submucosa (SIS), coupled with the synthetic polymer Chronoflex AR. The study concentrated on developing standardized experimental protocols for the evaluation of the conduits’ hydrodynamic and mechanical properties, including the implementation of an experimental apparatus capable of reproducing para-physiological conditions and a workflow for quantitative image analysis of the conduits. This approach provides a solid methodological foundation for future studies aimed at optimizing conduit design, improving manufacturing processes, and supporting the clinical translation of hybrid constructs. Ultimately, this research seeks to contribute to the development of innovative, reliable, and biocompatible solutions for cardiovascular and urological interventions, while providing a robust methodological framework for the subsequent optimization and standardization of hybrid conduits.| File | Dimensione | Formato | |
|---|---|---|---|
|
Ebanietti_Giombattista.pdf
Accesso riservato
Dimensione
6.98 MB
Formato
Adobe PDF
|
6.98 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/95825