The experimental work presented in this thesis was carried out at the Centro de Tecnología Biomédica of the Universidad Politécnica de Madrid, within the framework of the European project THOR. Building upon this research environment, this thesis investigates the potential of regenerated silk fibroin as an innovative biomaterial for vascular tissue engineering, aiming to address one of the major limitations in the clinical use of artificial grafts: the lack of rapid and effective vascularization. Recognizing the importance of developing scaffolds that can support endothelial cell adhesion, organization, and ultimately capillary formation, this work explores the entire process from material design to biological validation. Central to the project is the fabrication of silk fibers with tunable mechanical properties and high biocompatibility, achieved through a carefully optimized strain-flow spinning approach. Following the preparation and characterization of the silk fibers, the research focused on their functionalization with specific bioactive molecules designed to guide endothelial cell behavior. A combination of mechanical testing and detailed morphological analyses was performed to assess the fibers’ ability to withstand physiological conditions while providing an instructive substrate for cell alignment and organization. Endothelial cell cultures were then used to eval- uate how these functionalized fibers promote cellular growth, with a particular emphasis on cellular orientation and network formation processes that are essential for the creation of pre- vascularized tissue constructs. A key innovation in this thesis is the integration of biochemical cues on the fiber surface, specifically to direct endothelial cell adhesion and orientation. Through a combination of in vitro experiments and advanced imaging techniques, the biological effects of these functionalized scaffolds are thoroughly analyzed. Notably, the methodology developed provides a blueprint for assessing cell–material interactions using rigorous, unbiased quantification strategies. The project stands out for its multidisciplinary approach, encompassing materials science, cell biology, and image-based analysis, and delivers a comprehensive framework for evaluating new biomaterials in vascular tissue engineering. The approaches and methodologies adopted throughout this study provide valuable insights and represent a concrete step forward in the effort to design engineered tissues capable of overcoming the barriers to effective vascularization in regenerative medicine.
Il lavoro sperimentale presentato in questa tesi è stato svolto presso il Centro de Tecnología Biomédica dell’Universidad Politécnica de Madrid, nell’ambito del progetto europeo THOR. Partendo da questo contesto di ricerca, la tesi indaga il potenziale della fibroina di seta rigenerata come biomateriale innovativo per l’ingegneria dei tessuti vascolari, con l’obiettivo di affrontare una delle principali limitazioni nell’uso clinico degli innesti artificiali: la mancanza di una vascolarizzazione rapida ed efficace. Riconoscendo l’importanza di sviluppare scaffold in grado di supportare l’adesione, l’organizzazione e, in ultima analisi, la formazione di capillari da parte delle cellule endoteliali, questo lavoro esplora l’intero processo, dalla progettazione del materiale alla validazione biologica. Elemento centrale del progetto è la fabbricazione di fibre di seta con proprietà meccaniche modulabili e un’elevata biocompatibilità, ottenute attraverso un accurato processo di strain-flow spinning opportunamente ottimizzato. Dopo la preparazione e caratterizzazione delle fibre di seta, la ricerca si è concentrata sulla loro funzionalizzazione con specifiche molecole bioattive progettate per guidare il comportamento delle cellule endoteliali. Una combinazione di test meccanici e analisi morfologiche dettagliate è stata condotta per valutare la capacità delle fibre di resistere alle condizioni fisiologiche, offrendo al contempo un substrato istruttivo per l’allineamento e l’organizzazione cellulare. Colture di cellule endoteliali sono state poi utilizzate per valutare in che modo queste fibre funzionalizzate promuovano la crescita cellulare, con particolare attenzione all’orientamento cellulare e ai processi di formazione di reti essenziali per la creazione di costrutti tissutali pre-vascolarizzati. Un’innovazione chiave di questa tesi è l’integrazione di segnali biochimici sulla superficie delle fibre, specificamente mirata a indirizzare l’adesione e l’orientamento delle cellule endoteliali. Attraverso una combinazione di esperimenti in vitro e tecniche di imaging avanzate, vengono analizzati in modo approfondito gli effetti biologici di questi scaffold funzionalizzati. È particolarmente rilevante il fatto che la metodologia sviluppata fornisca un modello per la valutazione delle interazioni cellula-materiale, basato su strategie di quantificazione rigorose e prive di bias. Il progetto si distingue per il suo approccio multidisciplinare, che integra scienza dei materiali, biologia cellulare e analisi basata su immagini, offrendo un quadro completo per la valutazione di nuovi biomateriali nell’ingegneria dei tessuti vascolari. Gli approcci e le metodologie adottate in questo studio forniscono contributi significativi e rappresentano un concreto passo avanti nello sviluppo di tessuti ingegnerizzati capaci di superare le barriere legate a una vascolarizzazione efficace nella medicina rigenerativa.
Silk Fibroin for Vascular Tissue Engineering
RIZZI, ALESSANDRO
2024/2025
Abstract
The experimental work presented in this thesis was carried out at the Centro de Tecnología Biomédica of the Universidad Politécnica de Madrid, within the framework of the European project THOR. Building upon this research environment, this thesis investigates the potential of regenerated silk fibroin as an innovative biomaterial for vascular tissue engineering, aiming to address one of the major limitations in the clinical use of artificial grafts: the lack of rapid and effective vascularization. Recognizing the importance of developing scaffolds that can support endothelial cell adhesion, organization, and ultimately capillary formation, this work explores the entire process from material design to biological validation. Central to the project is the fabrication of silk fibers with tunable mechanical properties and high biocompatibility, achieved through a carefully optimized strain-flow spinning approach. Following the preparation and characterization of the silk fibers, the research focused on their functionalization with specific bioactive molecules designed to guide endothelial cell behavior. A combination of mechanical testing and detailed morphological analyses was performed to assess the fibers’ ability to withstand physiological conditions while providing an instructive substrate for cell alignment and organization. Endothelial cell cultures were then used to eval- uate how these functionalized fibers promote cellular growth, with a particular emphasis on cellular orientation and network formation processes that are essential for the creation of pre- vascularized tissue constructs. A key innovation in this thesis is the integration of biochemical cues on the fiber surface, specifically to direct endothelial cell adhesion and orientation. Through a combination of in vitro experiments and advanced imaging techniques, the biological effects of these functionalized scaffolds are thoroughly analyzed. Notably, the methodology developed provides a blueprint for assessing cell–material interactions using rigorous, unbiased quantification strategies. The project stands out for its multidisciplinary approach, encompassing materials science, cell biology, and image-based analysis, and delivers a comprehensive framework for evaluating new biomaterials in vascular tissue engineering. The approaches and methodologies adopted throughout this study provide valuable insights and represent a concrete step forward in the effort to design engineered tissues capable of overcoming the barriers to effective vascularization in regenerative medicine.| File | Dimensione | Formato | |
|---|---|---|---|
|
Rizzi_Alessandro.pdf
Accesso riservato
Dimensione
36.42 MB
Formato
Adobe PDF
|
36.42 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/96048