Recent technological developments in energy-efficient, self-adaptive electronic systems have been applied across many fields, from home automation and residential buildings to consumer-electronics displays and the automotive industry. Trying to meet modern environmental targets while at the same time driving a sustainable transformation has therefore become critical for countries and organizations, especially in sectors such as automotive lighting and LED driver technologies. The automotive lighting trend in new electric vehicles (EVs) has played a key role in the adoption of smart systems such as LED applications, driving this transition and motivating research into robust control and hardware strategies. LED drivers have become an essential part of this transformation, enabling precise control and adjustment of key LED parameters such as color and brightness, while maintaining high performance under diverse environmental conditions. Maintaining uniform and stable light flux, as well as accurate color quality, has therefore become particularly challenging, especially when accommodating modern market requirements for accuracy and precision. This study aims to present an evaluation of the major circuit parameters that most significantly impact and limit the output current accuracy of a particular LED driver developed by Infineon, with the objective of achieving a theoretical target accuracy of ±1.5%. A comprehensive simulation setup was developed, accounting for component non-idealities and layout-dependent effects. The analysis, initially conducted at the simulation level, was later extended through laboratory measurements performed over varying temperatures, supply voltages, and output current levels. Error analysis and statistical data were combined to quantify the inconsistencies between models and silicon measurements. Based on this analysis, the main contributors to the output current error were identified and systematically classified. A validity check of the results was then performed in order to confirm the reliability of the obtained data. Finally, a sensitivity-analysis-based method is proposed to reduce the complexity of the parasitic-extracted netlist, enabling the identification of the most critical elements to be considered during the layout phase in order to further enhance output accuracy.
Le recenti evoluzioni tecnologiche nei sistemi elettronici ad alta efficienza energetica e auto-adattivi hanno trovato applicazione in numerosi settori, spaziando dalla domotica e dall’edilizia residenziale fino ai display per l’elettronica di consumo e all’industria automobilistica. Cercare di soddisfare gli attuali obiettivi ambientali e, al tempo stesso, guidare una trasformazione sostenibile è diventato quindi un aspetto cruciale per paesi e organizzazioni, in particolare nei settori dell’illuminazione automobilistica e delle tecnologie LED driver. L'emergente mercato dei veicoli elettrici (VE), nel settore automobilistico in particolare, ha svolto un ruolo chiave nell’adozione di sistemi di illuminazione intelligenti per applicazioni LED, guidando questa transizione e stimolando la ricerca verso strategie di controllo robusto e soluzioni hardware innovative. I driver LED sono diventati una componente essenziale di questa trasformazione, consentendo il controllo preciso e la regolazione dei principali parametri dei LED, quali colore e luminosità, mantenendo al contempo elevate prestazioni in diverse condizioni ambientali. Mantenere un flusso luminoso stabile, oltre a garantire una qualità del colore accurata a seconda del tipo di applicazione, è diventato particolarmente impegnativo, soprattutto nel soddisfare i requisiti di precisione e accuratezza richiesti dal mercato. Questo studio si propone di valutare i principali parametri di circuito che influenzano e limitano maggiormente la precisione della corrente in uscita di un particolare LED driver sviluppato da Infineon, con l’obiettivo di raggiungere un'accuratezza teorica di ±1,5%. È stato sviluppato un setup di simulazione completo, che tiene conto delle non idealità dei componenti e degli effetti dipendenti dal layout. L’analisi, inizialmente condotta a livello di simulazione schematica, è stata successivamente estesa tramite misurazioni di laboratorio effettuate a diverse temperature, tensioni di alimentazione e livelli di corrente di uscita. L’analisi degli errori e i dati statistici sono stati combinati per quantificare le incongruenze tra i modelli e le misurazioni su silicio. Sulla base di questa analisi, sono stati identificati e sistematicamente classificati i principali fattori che contribuiscono all’errore della corrente in uscita. Successivamente, è stato eseguito un controllo di validità dei risultati per confermare l’affidabilità dei dati ottenuti. Infine, viene proposta una metodologia basata sull’analisi della sensitività per ridurre la complessità della netlist con effetti parassiti, permettendo di identificare gli elementi più critici da considerare durante la fase di layout, al fine di mitigarne gli effetti e migliorare così l’accuratezza della corrente.
Accuratezza della corrente nei LED Driver per Automotive: analisi delle sorgenti di errore e dei dati sperimentali
KARAJ, ALDO
2024/2025
Abstract
Recent technological developments in energy-efficient, self-adaptive electronic systems have been applied across many fields, from home automation and residential buildings to consumer-electronics displays and the automotive industry. Trying to meet modern environmental targets while at the same time driving a sustainable transformation has therefore become critical for countries and organizations, especially in sectors such as automotive lighting and LED driver technologies. The automotive lighting trend in new electric vehicles (EVs) has played a key role in the adoption of smart systems such as LED applications, driving this transition and motivating research into robust control and hardware strategies. LED drivers have become an essential part of this transformation, enabling precise control and adjustment of key LED parameters such as color and brightness, while maintaining high performance under diverse environmental conditions. Maintaining uniform and stable light flux, as well as accurate color quality, has therefore become particularly challenging, especially when accommodating modern market requirements for accuracy and precision. This study aims to present an evaluation of the major circuit parameters that most significantly impact and limit the output current accuracy of a particular LED driver developed by Infineon, with the objective of achieving a theoretical target accuracy of ±1.5%. A comprehensive simulation setup was developed, accounting for component non-idealities and layout-dependent effects. The analysis, initially conducted at the simulation level, was later extended through laboratory measurements performed over varying temperatures, supply voltages, and output current levels. Error analysis and statistical data were combined to quantify the inconsistencies between models and silicon measurements. Based on this analysis, the main contributors to the output current error were identified and systematically classified. A validity check of the results was then performed in order to confirm the reliability of the obtained data. Finally, a sensitivity-analysis-based method is proposed to reduce the complexity of the parasitic-extracted netlist, enabling the identification of the most critical elements to be considered during the layout phase in order to further enhance output accuracy.| File | Dimensione | Formato | |
|---|---|---|---|
|
Karaj_Aldo.pdf
Accesso riservato
Dimensione
12.18 MB
Formato
Adobe PDF
|
12.18 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/98359