Neuroblastoma (NB) is a highly aggressive pediatric tumor characterized by a strong tendency to metastasize, preferentially targeting the bone marrow. Despite advances in multimodal therapies, the prognosis for patients with bone marrow involvement remains poor, highlighting the need for new in vitro models capable of reproducing the early steps of metastatic dissemination. Increasing evidence suggests that extracellular vesicles (EVs) released by tumor cells play a crucial role in the formation of the premetastatic niche by modulating the stromal and endothelial components of the bone marrow microenvironment. The primary aim of this work was to develop a PDMS-based mesofluidic platform capable of recapitulating the bone marrow premetastatic niche in vitro, providing a controlled system to study interactions between hypoxia-induced neuroblastoma-derived EVs and resident bone marrow cells. This thesis focuses mainly on the design, fabrication, and validation of the platform under physiological conditions, representing a first and essential step toward establishing a functional and biologically relevant model for studying early metastatic events. The device incorporates both a Gelatin Methacrylate (GelMA) hydrogel compartment, mimicking the bone marrow matrix, and a channel in which cell medium flows, thus representing the vascular interface of the marrow. Different assembly methods were explored to achieve material compatibility and mechanical stability while ensuring biocompatibility and minimizing the risk of contamination, allowing functional integration of all components. Device characterization was performed through computational fluid dynamics (CFD) simulations and experimental flow tests, enabling the calculation of optimal shear stress and concentration gradients, and confirming uniform flow distribution and structural stability. Biological validation demonstrated high viability, adhesion, and organized growth of stromal cells and endothelial cells under static and dynamic conditions, confirming the functional relevance of the system. Although neuroblastoma cells and EVs have not yet been introduced in the device, the platform provides a robust technological and biological foundation for future studies on the early neuroblastoma metastasis, as well as on the role of EV-mediated communication in establishing the bone marrow premetastatic niche.
Il neuroblastoma (NB) è un tumore pediatrico solido altamente aggressivo, caratterizzato da una marcata tendenza alla metastatizzazione, prevalentemente diretta al midollo osseo. Nonostante i progressi raggiunti grazie alle terapie multimodali, la prognosi dei pazienti con coinvolgimento midollare rimane sfavorevole. Ciò sottolinea la necessità di sviluppare nuovi modelli in vitro in grado di riprodurre i primi stadi della disseminazione metastatica, così da comprenderne più a fondo meccanismi chimico-biologici. Evidenze scientifiche crescenti indicano che le vescicole extracellulari (EVs) rilasciate dalle cellule tumorali svolgano un ruolo cruciale nella formazione della nicchia tumorale premetastatica, modulando le componenti stromali ed endoteliali del microambiente midollare affinché diventi favorevole alla colonizzazione e alla sopravvivenza del NB stesso. L’obiettivo principale di questa ricerca è stato lo sviluppo una piattaforma mesofluidica in PDMS in grado di ricreare in vitro la nicchia tumorale premetastatica midollare, fornendo un sistema controllato per studiare in futuro le interazioni tra le EVs derivate da NB e le cellule residenti nel midollo osseo. La tesi si concentra sulla progettazione, fabbricazione e validazione della piattaforma, rappresentando un primo passo fondamentale verso la realizzazione di un modello funzionale e biologicamente rilevante per lo studio dei primi eventi metastatici. Il dispositivo integra un compartimento destinato a ospitare un hydrogel a base di Gelatina Metracrilata (GelMA), che simula la matrice midollare a diretto contatto con un canale di perfusione che ricrea l’interfaccia vascolare del midollo. Sono stati esplorati diversi metodi di assemblaggio per garantire compatibilità dei materiali, stabilità meccanica e biocompatibilità, riducendo al minimo il rischio di contaminazioni e consentendo un’integrazione funzionale di tutti i componenti. La caratterizzazione del sistema è stata condotta tramite simulazioni fluidodinamiche e test sperimentali di flusso, che hanno permesso di determinare lo shear stress ottimale e i gradienti di concentrazione, confermando al contempo l’uniformità del flusso e la stabilità strutturale. La validazione biologica ha confermato elevata vitalità, adesione e organizzazione di cellule stromali ed endoteliali, provando la rilevanza funzionale del sistema. Sebbene le cellule di neuroblastoma e le EVs non siano ancora state introdotte nel dispositivo, quest’ultimo fornisce una solida base tecnologica e biologica per studi futuri sulla metastasi del neuroblastoma, nonché sul ruolo della comunicazione mediata da EVs nella formazione della nicchia tumorale premetastatica.
Modellizzazione della formazione della nicchia pre-metastatica del neuroblastoma tramite vescicole extracellulari generate in condizioni ipossiche in una piattaforma di midollo osseo-on-chip
ZECCA, GIULIA
2024/2025
Abstract
Neuroblastoma (NB) is a highly aggressive pediatric tumor characterized by a strong tendency to metastasize, preferentially targeting the bone marrow. Despite advances in multimodal therapies, the prognosis for patients with bone marrow involvement remains poor, highlighting the need for new in vitro models capable of reproducing the early steps of metastatic dissemination. Increasing evidence suggests that extracellular vesicles (EVs) released by tumor cells play a crucial role in the formation of the premetastatic niche by modulating the stromal and endothelial components of the bone marrow microenvironment. The primary aim of this work was to develop a PDMS-based mesofluidic platform capable of recapitulating the bone marrow premetastatic niche in vitro, providing a controlled system to study interactions between hypoxia-induced neuroblastoma-derived EVs and resident bone marrow cells. This thesis focuses mainly on the design, fabrication, and validation of the platform under physiological conditions, representing a first and essential step toward establishing a functional and biologically relevant model for studying early metastatic events. The device incorporates both a Gelatin Methacrylate (GelMA) hydrogel compartment, mimicking the bone marrow matrix, and a channel in which cell medium flows, thus representing the vascular interface of the marrow. Different assembly methods were explored to achieve material compatibility and mechanical stability while ensuring biocompatibility and minimizing the risk of contamination, allowing functional integration of all components. Device characterization was performed through computational fluid dynamics (CFD) simulations and experimental flow tests, enabling the calculation of optimal shear stress and concentration gradients, and confirming uniform flow distribution and structural stability. Biological validation demonstrated high viability, adhesion, and organized growth of stromal cells and endothelial cells under static and dynamic conditions, confirming the functional relevance of the system. Although neuroblastoma cells and EVs have not yet been introduced in the device, the platform provides a robust technological and biological foundation for future studies on the early neuroblastoma metastasis, as well as on the role of EV-mediated communication in establishing the bone marrow premetastatic niche.| File | Dimensione | Formato | |
|---|---|---|---|
|
Zecca_Giulia.pdf
embargo fino al 24/11/2028
Dimensione
3.83 MB
Formato
Adobe PDF
|
3.83 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/98366