Bone tissue is a dynamic biological system, constantly remodeled through the coordinated activity of osteoblasts, osteoclasts, osteocytes, and progenitor cells. This continuous process ensures both self-repair and the ability of bone to adapt to mechanical stresses. However, when critical defects occur—whether caused by trauma or degenerative diseases—the natural regenerative capacity of bone becomes insufficient. In such cases, bioactive and structurally adequate bone substitutes are required. Bone Tissue Engineering (BTE) aims to address this challenge by designing three-dimensional scaffolds that support cell adhesion, proliferation, and osteogenic differentiation, while also sustaining appropriate mechanical loads. This thesis focuses on the design and fabrication of ceramic scaffolds made of hydroxyapatite (HA), a biocompatible and bioactive calcium phosphate whose chemical composition closely resembles that of bone’s mineral phase. To better reproduce the porous architecture of trabecular bone, Voronoi structures were adopted as the basis for scaffold geometry. The scaffolds were produced by 3D printing using Digital Light Processing (DLP) with a photocurable bioceramic ink. Eight different structural configurations were fabricated, each varying in the orientation of the trabecular network relative to the main load-bearing axis. Following thermal consolidation, the scaffolds underwent morphological, densitometric, and surface characterization. The analysis revealed that the chosen geometries were faithfully reproduced, with porosity levels between 70–75%, values that fall within the physiological range of cancellous bone and are well-suited to promoting nutrient diffusion and metabolic exchange. Scanning Electron Microscopy (SEM) highlighted a high degree of surface roughness, a feature that enhances cell–material interactions, while X-ray diffraction (XRD) confirmed the stability of the ceramic phase. Mechanical compression tests, interpreted through the Gibson–Ashby model, provided insights into the relationship between structural geometry and mechanical strength. The obtained results were compared with both the properties of natural bone and existing literature data, further validating the proposed design and manufacturing process. Finally, this project is part of a broader research framework that envisions future biological validation through in vitro cell culture studies, aimed at assessing scaffold biocompatibility and osteoinductive potential, with the ultimate goal of confirming their suitability for advanced orthopedic applications.
Il tessuto osseo è un sistema biologico dinamico, soggetto a continuo rimodellamento grazie all’azione coordinata di osteoblasti, osteoclasti, osteociti e cellule progenitrici. Questo processo è fondamentale per garantire l’autoriparazione e l’adattamento dell’osso ai carichi meccanici. In presenza di lesioni critiche, dovute a traumi o patologie degenerative, la rigenerazione ossea risulta insufficiente, rendendo necessaria l’applicazione di sostituti ossei bioattivi e strutturalmente idonei. L'ingegneria tissutale ossea (Bone Tissue Engineering, BTE), si propone di realizzare scaffold tridimensionali capaci di promuovere l’adesione, la proliferazione e la differenziazione osteogenica delle cellule, oltre a supportare un adeguato carico meccanico. Il presente lavoro di tesi prevede la progettazione e la realizzazione di scaffold ceramici in idrossiapatite (HA), un fosfato di calcio biocompatibile e bioattivo con composizione chimica simile alla componente minerale dell’osso. Sono state impiegate strutture Voronoi al fine di ottenere una geometria porosa capace di imitare più fedelmente l’architettura dell’osso trabecolare. Gli scaffold sono stati fabbricati tramite stampa 3D con tecnologia Digital Light Processing (DLP), utilizzando un inchiostro bioceramico fotopolimerizzabile. I modelli realizzati presentano otto configurazioni strutturali, differenziate per orientazione trabecolare rispetto all’asse di carico principale. Dopo un trattamento termico di consolidamento, lo studio prosegue con la caratterizzazione morfologica, densitometrica e superficiale. Questo ha permesso di analizzare l’effetto della geometria, confermando una buona riproducibilità dei modelli digitali, e del grado di porosità (70–75%), i cui valori rientrano nell’intervallo fisiologico dell’osso spugnoso e risultano ideali a favorire il trasporto di nutrienti e lo scambio metabolico cellulare. Le immagini ottenute mediante microscopia elettronica a scansione (SEM) hanno evidenziato un elevato grado di irregolarità superficiale, caratteristica favorevole all’interazione tra cellula e materiale, mentre l’analisi XRD ha confermato la stabilità della fase ceramica. Le prove meccaniche a compressione sono state interpretate attraverso il modello di Gibson-Ashby, per valutare la relazione tra resistenza e geometria trabecolare. I risultati ottenuti sono stati confrontati con le proprietà dell’osso naturale e i dati già presenti in letteratura, al fine di validare ulteriormente il processo di progettazione e produzione del modello sviluppato. Il progetto si inserisce in una linea di ricerca più ampia, che negli sviluppi futuri prevede una fase di validazione biologica attraverso test in vitro su linee cellulari, volti a valutare la biocompatibilità e il potenziale osteoinduttivo degli scaffold, al fine di confermarne l’idoneità per applicazioni cliniche ortopediche avanzate.
Realizzazione e caratterizzazione di scaffold in idrossiapatite con struttura Voronoi per applicazioni di rigenerazione ossea
TAVONE, MICHELE
2024/2025
Abstract
Bone tissue is a dynamic biological system, constantly remodeled through the coordinated activity of osteoblasts, osteoclasts, osteocytes, and progenitor cells. This continuous process ensures both self-repair and the ability of bone to adapt to mechanical stresses. However, when critical defects occur—whether caused by trauma or degenerative diseases—the natural regenerative capacity of bone becomes insufficient. In such cases, bioactive and structurally adequate bone substitutes are required. Bone Tissue Engineering (BTE) aims to address this challenge by designing three-dimensional scaffolds that support cell adhesion, proliferation, and osteogenic differentiation, while also sustaining appropriate mechanical loads. This thesis focuses on the design and fabrication of ceramic scaffolds made of hydroxyapatite (HA), a biocompatible and bioactive calcium phosphate whose chemical composition closely resembles that of bone’s mineral phase. To better reproduce the porous architecture of trabecular bone, Voronoi structures were adopted as the basis for scaffold geometry. The scaffolds were produced by 3D printing using Digital Light Processing (DLP) with a photocurable bioceramic ink. Eight different structural configurations were fabricated, each varying in the orientation of the trabecular network relative to the main load-bearing axis. Following thermal consolidation, the scaffolds underwent morphological, densitometric, and surface characterization. The analysis revealed that the chosen geometries were faithfully reproduced, with porosity levels between 70–75%, values that fall within the physiological range of cancellous bone and are well-suited to promoting nutrient diffusion and metabolic exchange. Scanning Electron Microscopy (SEM) highlighted a high degree of surface roughness, a feature that enhances cell–material interactions, while X-ray diffraction (XRD) confirmed the stability of the ceramic phase. Mechanical compression tests, interpreted through the Gibson–Ashby model, provided insights into the relationship between structural geometry and mechanical strength. The obtained results were compared with both the properties of natural bone and existing literature data, further validating the proposed design and manufacturing process. Finally, this project is part of a broader research framework that envisions future biological validation through in vitro cell culture studies, aimed at assessing scaffold biocompatibility and osteoinductive potential, with the ultimate goal of confirming their suitability for advanced orthopedic applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
Tavone_Michele.pdf
accesso aperto
Dimensione
5.23 MB
Formato
Adobe PDF
|
5.23 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/98461