This Master’s thesis deals with the design, simulation, and hardware implementation of a three-phase, three-level T-Type Neutral Point Clamped (TNPC) inverter, realized using SiC MOSFET technology. This topology represents an evolution of the conventional NPC inverter, as it reduces conduction losses and improves the quality of the output waveform, making it particularly suitable for high-efficiency power conversion applications. The work was carried out at the company E2C – Energy to Come, and initially focused on the sizing of the main power stage components and on the development of the Sinusoidal Pulse Width Modulation (SPWM) strategy, with particular attention on the generation of complementary gate signals and the insertion of dead times necessary to prevent destructive switching states. A first validation of the design was performed through simulations in MATLAB/Simulink, which allowed the analysis of voltage and current waveforms, current conduction paths under different operating conditions, the oscillation of the DC-link neutral point, and the undesired effects introduced by dead times. Finally, the design of the PCB and electronic interface boards was carried out, followed by their assembly, validation tests, and the functional verification of the complete inverter. The latter confirmed the correct generation of the three output sinusoids. This phase translated the design choices into a concrete realization, laying the groundwork for further optimization and experimental development.
Questa tesi di laurea magistrale tratta la progettazione, la simulazione e l’implementazione hardware di un inverter trifase a tre livelli di tipo T-Type Neutral Point Clamped (TNPC), realizzato con tecnologia SiC MOSFET. Tale topologia rappresenta un’evoluzione rispetto all’inverter NPC classico, in quanto consente di ridurre le perdite di conduzione e migliorare la qualità delle forme d'onda in uscita, risultando particolarmente adatta ad applicazioni di conversione di potenza ad alta efficienza. Il lavoro è stato svolto presso l'azienda E2C - Energy to Come e ha previsto innanzitutto il dimensionamento dei principali componenti del circuito di potenza e lo sviluppo della strategia di modulazione Sinusoidal PWM (SPWM), con particolare attenzione alla generazione dei segnali complementari e all’inserimento dei dead-time necessari a prevenire stati di commutazione distruttivi. Una prima verifica del progetto è stata effettuata tramite simulazioni in ambiente MATLAB/Simulink, che hanno permesso di analizzare le forme d’onda di tensione e corrente, i percorsi della corrente nelle diverse condizioni operative, l’oscillazione del punto neutro del DC-link e gli effetti indesiderati introdotti dai dead-time. Infine, è stato affrontato il design del PCB e delle schede elettroniche coinvolte, seguiti dall’assemblaggio, dai test di validazione e dalla prova funzionale dell’inverter completo, che ha confermato la corretta generazione delle tre sinusoidi di uscita. Questa fase ha permesso di tradurre le scelte progettuali in una realizzazione concreta, aprendo la strada a futuri sviluppi sperimentali.
Design, simulation and hardware implementation of a three-phase T-Type Neutral Point Clamped inverter
SCUSSAT, LEONARDO ORSO
2024/2025
Abstract
This Master’s thesis deals with the design, simulation, and hardware implementation of a three-phase, three-level T-Type Neutral Point Clamped (TNPC) inverter, realized using SiC MOSFET technology. This topology represents an evolution of the conventional NPC inverter, as it reduces conduction losses and improves the quality of the output waveform, making it particularly suitable for high-efficiency power conversion applications. The work was carried out at the company E2C – Energy to Come, and initially focused on the sizing of the main power stage components and on the development of the Sinusoidal Pulse Width Modulation (SPWM) strategy, with particular attention on the generation of complementary gate signals and the insertion of dead times necessary to prevent destructive switching states. A first validation of the design was performed through simulations in MATLAB/Simulink, which allowed the analysis of voltage and current waveforms, current conduction paths under different operating conditions, the oscillation of the DC-link neutral point, and the undesired effects introduced by dead times. Finally, the design of the PCB and electronic interface boards was carried out, followed by their assembly, validation tests, and the functional verification of the complete inverter. The latter confirmed the correct generation of the three output sinusoids. This phase translated the design choices into a concrete realization, laying the groundwork for further optimization and experimental development.| File | Dimensione | Formato | |
|---|---|---|---|
|
Scussat_LeonardoOrso.pdf
Accesso riservato
Dimensione
7.74 MB
Formato
Adobe PDF
|
7.74 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/98917