The growing use of social media has generated enormous amounts of data on user interactions. This thesis analyzes interaction dynamics on the Instagram page of the Department of Statistical Sciences at the University of Padova, aiming to understand users' propensity to interact with content and identify posts that generate greater engagement. The data, collected through web scraping, comprise over one million binary observations related to likes and comments from 2018 to 2025. Generalized linear mixed models with crossed random effects were implemented for the analysis, estimated through Bayesian variational inference and frequentist Laplace approximation. Variational inference demonstrated significant advantages in terms of computational efficiency, drastically reducing estimation time while maintaining predictive performance equivalent to traditional methods. This research provides contributions both at the applied level, offering guidance to optimize digital communication strategies, and at the methodological level, demonstrating how variational inference represents a valid scalable alternative for analyzing large datasets in social media analytics contexts.
L'utilizzo crescente dei social media ha generato enormi quantità di dati sulle interazioni degli utenti. Questa tesi analizza le dinamiche di interazione sulla pagina Instagram del Dipartimento di Scienze Statistiche dell'Università di Padova, con l'obiettivo di comprendere la propensione degli utenti a interagire con i contenuti e identificare i post che generano maggiore coinvolgimento. I dati, raccolti tramite web scraping, comprendono oltre un milione di osservazioni binarie relative a like e commenti nel periodo 2018-2025. Per l'analisi sono stati implementati modelli lineari generalizzati misti con effetti casuali incrociati, stimati attraverso inferenza variazionale bayesiana e approssimazione di Laplace frequentista. L'inferenza variazionale ha dimostrato vantaggi significativi in termini di efficienza computazionale, riducendo drasticamente i tempi di stima pur mantenendo performance predittive equivalenti ai metodi tradizionali. Questa ricerca fornisce contributi sia sul piano applicativo, offrendo indicazioni per ottimizzare le strategie di comunicazione digitale, sia sul piano metodologico, dimostrando come l'inferenza variazionale rappresenti una valida alternativa scalabile per l'analisi di grandi dataset in contesti di social media analytics.
"Modelli gerarchici generalizzati per l’analisi delle interazioni su Instagram”
LAVA, BENEDETTA
2024/2025
Abstract
The growing use of social media has generated enormous amounts of data on user interactions. This thesis analyzes interaction dynamics on the Instagram page of the Department of Statistical Sciences at the University of Padova, aiming to understand users' propensity to interact with content and identify posts that generate greater engagement. The data, collected through web scraping, comprise over one million binary observations related to likes and comments from 2018 to 2025. Generalized linear mixed models with crossed random effects were implemented for the analysis, estimated through Bayesian variational inference and frequentist Laplace approximation. Variational inference demonstrated significant advantages in terms of computational efficiency, drastically reducing estimation time while maintaining predictive performance equivalent to traditional methods. This research provides contributions both at the applied level, offering guidance to optimize digital communication strategies, and at the methodological level, demonstrating how variational inference represents a valid scalable alternative for analyzing large datasets in social media analytics contexts.| File | Dimensione | Formato | |
|---|---|---|---|
|
Lava_Benedetta.pdf
accesso aperto
Dimensione
15.53 MB
Formato
Adobe PDF
|
15.53 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/98939