Total ankle replacement (TAR) is a motion-preserving alternative to arthrodesis for end-stage ankle osteoarthritis. Current implants show encouraging clinical outcomes, but their longevity remains limited compared to other joint arthroplasties, mainly due to the restricted anatomical adaptability of standard off-the-shelf (OTS) designs. Insufficient bone coverage and poor congruence at the resection planes can produce uneven load distribution, micromotion, and early loosening. Recent developments in medical imaging, computational modeling, and additive manufacturing have enabled patient-specific prostheses, offering potential solutions to these limitations. This thesis was carried out within the 3POD (3D Printing in Orthopaedics for Personalized Devices) clinical trial at the Rizzoli Orthopaedic Institute, which compares standard OTS ankle prostheses with fully customized implants. The work focuses exclusively on the customized planning workflow, starting from a conventional OTS configuration. As a reference, the BOX TAR system was considered the standard OTS planning approach. From this baseline, a customized plan was developed through three-dimensional reconstruction of the patient’s anatomy, enabling tailored implant sizing, positioning, and orientation. A methodological framework was defined to quantitatively assess patient-specific TAR systems, comparing OTS planning, custom planning, and postoperative conditions. Several geometric and spatial parameters were measured, including articular coverage surfaces, linear distances between anatomical landmarks, and angular values describing component orientation and overall alignment. These parameters were selected to evaluate both the anatomical accuracy of custom positioning and potential deviations introduced during surgery. Statistical analysis was performed using the Wilcoxon signed-rank test, suitable for non-parametric paired datasets with small sample variability. Preliminary results indicate that customized planning provides improved bone coverage, as the implant better conforms to the patient’s anatomy. Consequently, distances between prosthetic components and cortical borders are reduced, suggesting a more complete coverage of the osteotomy surfaces compared to the OTS approach. Postoperative measurements were taken to verify correspondence between the achieved configuration and planning design intent, representing an indicator of surgical accuracy and effectiveness. Overall, this work introduces a reproducible framework for the quantitative evaluation of patient-specific ankle prostheses, supporting optimization of implant design, surgical execution, and clinical validation of personalized orthopaedic solutions. Keywords: Custom TAR, 3D Printing, Ankle Biomechanics, Additive Manufacturing, Bone–implant Congruence, 3POD Project.
La protesi totale di caviglia (TAR) rappresenta un’alternativa conservativa dell’articolarità rispetto all’artrodesi nel trattamento dell’artrosi avanzata di caviglia. Gli impianti attualmente disponibili mostrano risultati clinici incoraggianti, ma la loro longevità rimane inferiore rispetto ad altre artroprotesi, principalmente a causa della limitata adattabilità anatomica dei modelli standard “off-the-shelf” (OTS). Una copertura ossea insufficiente e una scarsa congruenza delle superfici di resezione possono determinare una distribuzione irregolare dei carichi, micromovimenti e un allentamento precoce dei componenti. I recenti progressi nell’imaging medico, nella modellazione computazionale e nella stampa 3D hanno reso possibile lo sviluppo di protesi personalizzate, in grado di superare tali limitazioni. La presente tesi è stata svolta nell’ambito dello studio clinico 3POD (3D Printing in Orthopaedics for Personalized Devices) presso l’Istituto Ortopedico Rizzoli, che confronta protesi di caviglia standard OTS con impianti completamente personalizzati. Il lavoro si concentra esclusivamente sul flusso di pianificazione personalizzata, sviluppato a partire da una configurazione OTS di riferimento, identificata nel sistema BOX TAR. Da questa base, è stato elaborato un piano custom attraverso la ricostruzione tridimensionale dell’anatomia del paziente, consentendo un adattamento mirato in termini di dimensionamento, posizionamento e orientamento dell’impianto. È stato quindi definito un framework metodologico per la valutazione quantitativa dei sistemi di protesi personalizzate di caviglia, confrontando pianificazione OTS, pianificazione custom e configurazione postoperatoria. Sono stati misurati diversi parametri geometrici e spaziali, tra cui le superfici di copertura articolare, le distanze lineari tra punti anatomici e gli angoli rappresentativi dell’orientamento e dell’allineamento complessivo dei componenti. Tali parametri sono stati scelti per valutare sia l’accuratezza anatomica della pianificazione personalizzata, sia le eventuali deviazioni introdotte durante la fase chirurgica. L’analisi statistica è stata condotta mediante test dei ranghi con segno di Wilcoxon, adatto a campioni appaiati non parametrici con bassa numerosità. I risultati preliminari indicano che la pianificazione personalizzata consente una migliore copertura ossea, grazie a una conformità superiore dell’impianto all’anatomia del paziente. Ne consegue una riduzione delle distanze tra i componenti protesici e le cortecce ossee, suggerendo una copertura più completa delle superfici osteotomiche rispetto alla pianificazione OTS. Le misurazioni postoperatorie hanno permesso di verificare la corrispondenza tra la configurazione chirurgicamente ottenuta e quella pianificata, rappresentando un indicatore dell’accuratezza e dell’efficacia dell’esecuzione chirurgica. Complessivamente, questo lavoro introduce un metodo riproducibile per la valutazione quantitativa delle protesi di caviglia personalizzate, contribuendo all’ottimizzazione della progettazione, dell’esecuzione chirurgica e della validazione clinica delle soluzioni ortopediche personalizzate. Parole chiave: Protesi totale di caviglia personalizzata, Stampa 3D, Biomeccanica della caviglia, Additive Manufacturing, Congruenza osso–impianto, Progetto 3POD.
New measures to evaluate the efficacy of custom-made endoprosthesis implantation: the case of total ankle arthroplasty.
GHIGLIAZZA, FRANCESCA
2024/2025
Abstract
Total ankle replacement (TAR) is a motion-preserving alternative to arthrodesis for end-stage ankle osteoarthritis. Current implants show encouraging clinical outcomes, but their longevity remains limited compared to other joint arthroplasties, mainly due to the restricted anatomical adaptability of standard off-the-shelf (OTS) designs. Insufficient bone coverage and poor congruence at the resection planes can produce uneven load distribution, micromotion, and early loosening. Recent developments in medical imaging, computational modeling, and additive manufacturing have enabled patient-specific prostheses, offering potential solutions to these limitations. This thesis was carried out within the 3POD (3D Printing in Orthopaedics for Personalized Devices) clinical trial at the Rizzoli Orthopaedic Institute, which compares standard OTS ankle prostheses with fully customized implants. The work focuses exclusively on the customized planning workflow, starting from a conventional OTS configuration. As a reference, the BOX TAR system was considered the standard OTS planning approach. From this baseline, a customized plan was developed through three-dimensional reconstruction of the patient’s anatomy, enabling tailored implant sizing, positioning, and orientation. A methodological framework was defined to quantitatively assess patient-specific TAR systems, comparing OTS planning, custom planning, and postoperative conditions. Several geometric and spatial parameters were measured, including articular coverage surfaces, linear distances between anatomical landmarks, and angular values describing component orientation and overall alignment. These parameters were selected to evaluate both the anatomical accuracy of custom positioning and potential deviations introduced during surgery. Statistical analysis was performed using the Wilcoxon signed-rank test, suitable for non-parametric paired datasets with small sample variability. Preliminary results indicate that customized planning provides improved bone coverage, as the implant better conforms to the patient’s anatomy. Consequently, distances between prosthetic components and cortical borders are reduced, suggesting a more complete coverage of the osteotomy surfaces compared to the OTS approach. Postoperative measurements were taken to verify correspondence between the achieved configuration and planning design intent, representing an indicator of surgical accuracy and effectiveness. Overall, this work introduces a reproducible framework for the quantitative evaluation of patient-specific ankle prostheses, supporting optimization of implant design, surgical execution, and clinical validation of personalized orthopaedic solutions. Keywords: Custom TAR, 3D Printing, Ankle Biomechanics, Additive Manufacturing, Bone–implant Congruence, 3POD Project.| File | Dimensione | Formato | |
|---|---|---|---|
|
Ghigliazza_Francesca.pdf
Accesso riservato
Dimensione
10.03 MB
Formato
Adobe PDF
|
10.03 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/99263