Building on the work of Professor Cenedese Angelo and colleagues, titled “Model Predictive Control for Cooperative Transportation with Feasibility-Aware Policy,” which proposes an MPC-based approach for cooperative navigation of a Multi-Robot System in environments with static and dynamic obstacles, this study adopts their project goal as a foundation to design a new system. In the new framework, omnidirectional robots are replaced by differential-drive robots, and a more sophisticated policy for managing edge cases is introduced. This document explains the motivations behind these changes and describes the development workflow, supported by simulations conducted in MATLAB. It also presents experiments where artificial noise is injected into the system, and concludes by outlining the groundwork for a future real-time implementation on physical robotic platforms.
Basandosi sul lavoro del professor Cenedese Angelo e dei suoi colleghi, intitolato “Model Predictive Control for Cooperative Transportation with Feasibility-Aware Policy”, che propone un approccio basato su MPC per la navigazione cooperativa di un sistema multi-robot in ambienti con ostacoli statici e dinamici, questo studio adotta il loro obiettivo di progetto come base per la progettazione di un nuovo sistema. Nel nuovo framework, i robot omnidirezionali sono sostituiti da robot a guida differenziale e viene introdotta una politica più sofisticata per la gestione dei casi limite. Questo documento spiega le motivazioni alla base di questi cambiamenti e descrive il flusso di sviluppo, supportato da simulazioni condotte in MATLAB. Presenta inoltre esperimenti in cui viene iniettato rumore artificiale nel sistema e si conclude delineando le basi per una futura implementazione in tempo reale su piattaforme robotiche fisiche
MPC-based cooperative transportation: towards real-world dynamic environments
KOVACHEV, ZLATKO
2024/2025
Abstract
Building on the work of Professor Cenedese Angelo and colleagues, titled “Model Predictive Control for Cooperative Transportation with Feasibility-Aware Policy,” which proposes an MPC-based approach for cooperative navigation of a Multi-Robot System in environments with static and dynamic obstacles, this study adopts their project goal as a foundation to design a new system. In the new framework, omnidirectional robots are replaced by differential-drive robots, and a more sophisticated policy for managing edge cases is introduced. This document explains the motivations behind these changes and describes the development workflow, supported by simulations conducted in MATLAB. It also presents experiments where artificial noise is injected into the system, and concludes by outlining the groundwork for a future real-time implementation on physical robotic platforms.| File | Dimensione | Formato | |
|---|---|---|---|
|
Kovachev_Zlatko.pdf
accesso aperto
Dimensione
29.98 MB
Formato
Adobe PDF
|
29.98 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/99594