Arterial flow is characterized by complex dynamics that influence vascular health and the performance of intravascular devices. This thesis presents the design, assembly, and validation of a laboratory-scale hydraulic facility aimed at replicating key features of steady arterial flow, with particular emphasis on high-fidelity wall-pressure measurements. The experimental setup consists of a closed-loop circulation system equipped with a flow meter and high-sensitivity pressure sensors mounted on custom 3D-printed test sections. A substantial part of the work is dedicated to characterizing and mitigating measurement errors, both electrical and mechanical, through systematic testing. These include the identification and removal of electrical noise, the analysis of pump-induced vibrational contamination, impulse-response tests to assess structural–acoustic resonances, and the implementation of multi-sensor denoising techniques such as covariance-based subtraction and SPOD. Once the facility and the sensors were validated, steady-flow experiments were performed over a range of Reynolds numbers comparable to those found in medium- to large-caliber arteries. The study provides quantitative measurements of streamwise pressure gradients, friction factors, and wall-pressure statistics. These results form a consistent and self-validated dataset for smooth-wall arterial-like flow. Although the facility is not intended to reproduce physiological flow in full detail, it provides a controlled environment for studying turbulent pressure fluctuations and hydrodynamic losses with vascular relevance. The modularity of the 3D-printed test sections also enables future investigations on how surface irregularities, such as stent-like protrusions or pathological roughness, modify both mean and fluctuating pressure fields.
Il flusso arterioso è caratterizzato da dinamiche complesse che influenzano la salute vascolare e le prestazioni dei dispositivi endovascolari. Questa tesi presenta la progettazione, l'assemblaggio e la validazione di un impianto idraulico in scala di laboratorio mirato a replicare le caratteristiche chiave del flusso arterioso stazionario, con particolare enfasi sulle misure di pressione a parete ad alta fedeltà. Il setup sperimentale consiste in un sistema di circolazione a ciclo chiuso equipaggiato con un flussimetro e sensori di pressione ad alta sensibilità montati su sezioni di prova personalizzate realizzate tramite stampa 3D. Una parte sostanziale del lavoro è dedicata alla caratterizzazione e alla mitigazione degli errori di misura, sia di natura elettrica che meccanica, attraverso test sistematici. Questi includono l'identificazione e la rimozione del rumore elettrico, l'analisi della contaminazione vibrazionale indotta dalla pompa, test di risposta all'impulso per valutare le risonanze strutturali-acustiche e l'implementazione di tecniche di denoising multi-sensore, come la sottrazione basata sulla covarianza e la SPOD. Una volta validati l'impianto e i sensori, sono stati condotti esperimenti in flusso stazionario su un intervallo di numeri di Reynolds comparabile a quello riscontrabile nelle arterie di medio e grosso calibro. Lo studio fornisce misure quantitative dei gradienti di pressione longitudinali, dei fattori di attrito e delle statistiche della pressione a parete. Questi risultati costituiscono un dataset coerente e auto-validato per flussi simil-arteriosi in condotti a parete liscia. Sebbene l'impianto non sia inteso per riprodurre il flusso fisiologico in ogni dettaglio, esso fornisce un ambiente controllato per lo studio delle fluttuazioni di pressione turbolente e delle perdite idrodinamiche di rilevanza vascolare. La modularità delle sezioni di prova stampate in 3D consente inoltre future indagini su come le irregolarità superficiali, quali protuberanze simili a stent o rugosità patologiche, modifichino i campi di pressione sia medi che fluttuanti.
Misurazioni Fluidodinamiche in un Circuito Idraulico che Replica le Condizioni Emodinamiche delle Arterie Umane
MARZELLOTTA, ANDREA
2024/2025
Abstract
Arterial flow is characterized by complex dynamics that influence vascular health and the performance of intravascular devices. This thesis presents the design, assembly, and validation of a laboratory-scale hydraulic facility aimed at replicating key features of steady arterial flow, with particular emphasis on high-fidelity wall-pressure measurements. The experimental setup consists of a closed-loop circulation system equipped with a flow meter and high-sensitivity pressure sensors mounted on custom 3D-printed test sections. A substantial part of the work is dedicated to characterizing and mitigating measurement errors, both electrical and mechanical, through systematic testing. These include the identification and removal of electrical noise, the analysis of pump-induced vibrational contamination, impulse-response tests to assess structural–acoustic resonances, and the implementation of multi-sensor denoising techniques such as covariance-based subtraction and SPOD. Once the facility and the sensors were validated, steady-flow experiments were performed over a range of Reynolds numbers comparable to those found in medium- to large-caliber arteries. The study provides quantitative measurements of streamwise pressure gradients, friction factors, and wall-pressure statistics. These results form a consistent and self-validated dataset for smooth-wall arterial-like flow. Although the facility is not intended to reproduce physiological flow in full detail, it provides a controlled environment for studying turbulent pressure fluctuations and hydrodynamic losses with vascular relevance. The modularity of the 3D-printed test sections also enables future investigations on how surface irregularities, such as stent-like protrusions or pathological roughness, modify both mean and fluctuating pressure fields.| File | Dimensione | Formato | |
|---|---|---|---|
|
Marzellotta_Andrea.pdf
accesso aperto
Dimensione
27.65 MB
Formato
Adobe PDF
|
27.65 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/99596