Three-dimensional (3D) culture systems, such as organoids and assembloids, have advanced the study of human gastric tissue development and disease modeling. However, current models still fail to fully reproduce the spatial organization, functional compartmentalization, and cellular interactions of the stomach. These aspects are crucial for understanding regional interactions and differentiation pathways leading to specialized epithelial lineages. To address this limitation, two strategies were adopted: the generation of gastric assembloids to investigate tissue integration and morphogenesis, and organoid-based differentiation models to analyze gland and pit formation under defined conditions. Gastric assembloids were generated by culturing organoids derived from adult gastric stem cells of the antrum, corpus, and fundus in a culture environment that promoted controlled fusion. Development was monitored by bright-field microscopy, histology (H&E), and immunofluorescence for region-specific markers including MUC5AC and PDX1. By day 10, assembloids exhibited continuous epithelium, proliferative zones, and regional compartmentalization; however, incomplete fusion and sample-to-sample variability highlighted technical and biological limitations. Optimization of culture parameters would be necessary to improve reproducibility. In parallel, organoids were seeded onto decellularized porcine stomach scaffolds to model epithelial differentiation. Exposure to pro-differentiation media yielded distinct outcomes: glandular differentiation was characterized by INT4B expression and a compact architecture, whereas pit differentiation generated larger circular structures with peripheral Ki67, reflecting in vivo proliferative compartmentalization. Pit formation appeared more efficient, but MUC5AC expression remained low, indicating that scaffold culture alone was insufficient for full mucous cell maturation. Additional biochemical cues or supportive co-cultures are likely required to recapitulate the complexity of gastric differentiation. Together, these models illustrate complementary strengths: assembloids provide a platform to study regional specification, cell–cell interactions, and morphogenesis, whereas scaffold-based differentiation elucidates mechanisms of lineage commitment. Some limitations remain in achieving full functional maturation, particularly of mucus-secreting cells. Future improvements may involve refining culture media, incorporating stromal and immune components, and applying dynamic mechanical stimulation. Overall, gastric assembloids and organoid differentiation systems represent promising approaches for generating physiologically relevant gastric tissue in vitro, thereby enhancing applications in regenerative medicine, disease modeling, and drug discovery.
I sistemi di coltura tridimensionali (3D), come organoidi e assembloidi, hanno fatto progredire lo studio dello sviluppo del tessuto gastrico umano e la modellizzazione delle malattie. Tuttavia, i modelli attuali non riescono ancora a riprodurre completamente l'organizzazione spaziale, la compartimentazione funzionale e le interazioni cellulari dello stomaco. Questi aspetti sono fondamentali per comprendere le interazioni regionali e i percorsi di differenziazione che portano a lignaggi epiteliali specializzati. Per ovviare a questa limitazione, sono state adottate due strategie: la generazione di assembloidi gastrici per studiare l'integrazione e la morfogenesi dei tessuti, e modelli di differenziazione basati su organoidi per analizzare la formazione di ghiandole e fossette in condizioni definite. Gli assembloidi gastrici sono stati prodotti coltivando organoidi derivati da cellule staminali gastriche adulte dell'antro, del corpo e del fondo in un ambiente che favorisse la fusione controllata. Lo sviluppo è stato monitorato mediante microscopia in campo chiaro, istologia (H&E) e immunofluorescenza per marcatori specifici di regione, tra cui MUC5AC e PDX1. Al decimo giorno, gli assembloidi mostravano epitelio continuo, zone proliferative e compartimentazione regionale; tuttavia, la fusione incompleta e la variabilità tra i campioni hanno evidenziato limiti tecnici e biologici. Per migliorare la riproducibilità, sarebbe necessaria l'ottimizzazione dei parametri di coltura. Parallelamente, gli organoidi sono stati seminati su scaffold di stomaco suino decellularizzato per modellare la differenziazione epiteliale. L'esposizione a terreni di coltura pro-differenziativi ha prodotto risultati distinti: la differenziazione ghiandolare era caratterizzata dall'espressione di INT4B e da un'architettura compatta, mentre la differenziazione pit generava strutture circolari più ampie con Ki67 periferico, riflettendo la compartimentazione proliferativa in vivo. La formazione delle fossette è risultata più efficiente, ma l'espressione di MUC5AC è rimasta bassa, indicando che la coltura su scaffold da sola era insufficiente per la completa maturazione delle cellule mucose. Probabilmente, sarebbero necessari ulteriori segnali biochimici o co-colture di supporto per ricapitolare la complessità della differenziazione gastrica. Nel loro insieme, questi modelli illustrano punti di forza complementari: gli assembloidi offrono una piattaforma per lo studio della specificazione regionale, delle interazioni cellula-cellula e della morfogenesi, mentre la differenziazione su scaffold rivela i meccanismi di impegno della linea cellulare. Permangono alcune limitazioni nel raggiungimento della piena maturazione funzionale, in particolare delle cellule secernenti muco. Miglioramenti futuri potrebbero includere il perfezionamento dei terreni di coltura, l'incorporazione di elementi stromali e immunitari e l'applicazione di stimoli meccanici dinamici. Nel complesso, questi approcci rappresentano piattaforme promettenti per generare in vitro tessuto gastrico fisiologicamente rilevante e per accelerare la traslazione di nuove strategie terapeutiche.
Ripopolamento di patch gastrici decellularizzati con cellule staminali gastriche umane per la modellizzazione epiteliale e la traslazione clinica.
OMODEI, ANNA
2024/2025
Abstract
Three-dimensional (3D) culture systems, such as organoids and assembloids, have advanced the study of human gastric tissue development and disease modeling. However, current models still fail to fully reproduce the spatial organization, functional compartmentalization, and cellular interactions of the stomach. These aspects are crucial for understanding regional interactions and differentiation pathways leading to specialized epithelial lineages. To address this limitation, two strategies were adopted: the generation of gastric assembloids to investigate tissue integration and morphogenesis, and organoid-based differentiation models to analyze gland and pit formation under defined conditions. Gastric assembloids were generated by culturing organoids derived from adult gastric stem cells of the antrum, corpus, and fundus in a culture environment that promoted controlled fusion. Development was monitored by bright-field microscopy, histology (H&E), and immunofluorescence for region-specific markers including MUC5AC and PDX1. By day 10, assembloids exhibited continuous epithelium, proliferative zones, and regional compartmentalization; however, incomplete fusion and sample-to-sample variability highlighted technical and biological limitations. Optimization of culture parameters would be necessary to improve reproducibility. In parallel, organoids were seeded onto decellularized porcine stomach scaffolds to model epithelial differentiation. Exposure to pro-differentiation media yielded distinct outcomes: glandular differentiation was characterized by INT4B expression and a compact architecture, whereas pit differentiation generated larger circular structures with peripheral Ki67, reflecting in vivo proliferative compartmentalization. Pit formation appeared more efficient, but MUC5AC expression remained low, indicating that scaffold culture alone was insufficient for full mucous cell maturation. Additional biochemical cues or supportive co-cultures are likely required to recapitulate the complexity of gastric differentiation. Together, these models illustrate complementary strengths: assembloids provide a platform to study regional specification, cell–cell interactions, and morphogenesis, whereas scaffold-based differentiation elucidates mechanisms of lineage commitment. Some limitations remain in achieving full functional maturation, particularly of mucus-secreting cells. Future improvements may involve refining culture media, incorporating stromal and immune components, and applying dynamic mechanical stimulation. Overall, gastric assembloids and organoid differentiation systems represent promising approaches for generating physiologically relevant gastric tissue in vitro, thereby enhancing applications in regenerative medicine, disease modeling, and drug discovery.| File | Dimensione | Formato | |
|---|---|---|---|
|
Omodei_Anna.pdf
Accesso riservato
Dimensione
3.61 MB
Formato
Adobe PDF
|
3.61 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/99598