Uterine physiology undergoes cyclic changes modulated by hormonal fluctuations involving perfusion and oxygenation across the menstrual cycle. Understanding this physiological hemodynamic function is important for the early identification and monitoring of various gynaecological disorders, including adenomyosis, endometriosis, amenorrhea and dysmenorrhea. Traditional imaging techniques used to assess uterine perfusion, such as transvaginal and Doppler ultrasound and pelvic magnetic resonance imaging (MRI), while clinically accurate, often present significant limitations in terms of invasiveness, cost, operator dependency, and limited suitability for real-life and repeated physiological monitoring. The aim of this experimental thesis is to help filling the gap in the current literature by characterizing the hemodynamical activity of the uterus throughout the four phases of the menstrual cycle (menstrual, follicular, ovulatory and luteal) in healthy, non-pregnant women, by introducing for the first time the application of Near-Infrared Spectroscopy (NIRS) for uterine tissues monitoring. The experimental setup involves the use of the PortaLite system (by Artinis Medical Systems), a wearable Continuous-wave Near-Infrared Spectroscopy device widely used for muscle and cerebral monitoring but never applied to uterine tissues before. Measurements were performed on 12 healthy volunteers, and the recorded NIRS signals were analyzed to extract two main parameters: the Tissue Saturation Index (TSI), reflecting tissue oxygenation, and a newly derived Perfusion index (PI), representing blood flow variations. The temporal evolution of these parameters was assessed across the menstrual cycle to investigate whether measurable differences could be detected. The results demonstrated the feasibility of using Near-infrared Spectroscopy for non-invasive and repeated monitoring of uterine physiology in normal conditions. This proof of concept provides the methodological basis for future studies involving larger number of subjects and opens new perspectives for new, innovative diagnostic tools and continuous monitoring strategies in women’s reproductive health.
La fisiologia uterina subisce cambiamenti ciclici modulati dalle fluttuazioni ormonali che influenzano la perfusione e l’ossigenazione durante il ciclo mestruale. Comprendere queste dinamiche è fondamentale per l’identificazione precoce e il monitoraggio di vari disturbi ginecologici, tra cui adenomiosi, endometriosi, amenorrea e dismenorrea. Le tecniche di imaging tradizionalmente utilizzate per valutare la perfusione uterina, come l’ecografia transvaginale, l’ecografia Doppler e la risonanza magnetica pelvica (MRI), pur essendo clinicamente accurate, presentano limiti significativi in termini di invasività, costi, dipendenza dall’operatore e scarsa idoneità al monitoraggio fisiologico ripetuto e nella vita reale. L’obiettivo di questa tesi sperimentale è contribuire a colmare la lacuna presente nella letteratura attuale caratterizzando l’attività emodinamica dell’utero durante le quattro fasi del ciclo mestruale (mestruale, follicolare, ovulatoria e lutea) in donne sane e non in gravidanza, introducendo per la prima volta l’applicazione della spettroscopia nel vicino infrarosso (NIRS) al monitoraggio dei tessuti uterini. Il setup sperimentale prevede l’utilizzo del sistema PortaLite (Artinis Medical Systems), un dispositivo indossabile per spettroscopia nel vicino infrarosso a onda continua (CW-NIRS), ampiamente impiegato nel monitoraggio muscolare e cerebrale, ma mai applicato finora ai tessuti uterini. Le misurazioni sono state effettuate su 12 volontarie sane e i segnali NIRS registrati sono stati analizzati per estrarre due parametri principali: l’indice di saturazione dei tessuti (TSI), che riflette l’ossigenazione tissutale, e un indice di perfusione (PI) di nuova derivazione, rappresentativo delle variazioni del flusso sanguigno. L’andamento temporale di questi parametri è stato valutato durante l’intero ciclo mestruale per verificare la presenza di differenze misurabili. I risultati hanno dimostrato la fattibilità dell’utilizzo della spettroscopia nel vicino infrarosso per un monitoraggio non invasivo e ripetuto della fisiologia uterina in condizioni normali. Questa prova di fattibilità fornisce una base metodologica per futuri studi su campioni più ampi e apre nuove prospettive per lo sviluppo di strumenti diagnostici innovativi e strategie di monitoraggio continuo nella salute riproduttiva femminile.
Monitoring the hemodynamical activity of the uterus across the menstrual cycle using Near-Infrared Spectroscopy
DORIGO, SARA
2024/2025
Abstract
Uterine physiology undergoes cyclic changes modulated by hormonal fluctuations involving perfusion and oxygenation across the menstrual cycle. Understanding this physiological hemodynamic function is important for the early identification and monitoring of various gynaecological disorders, including adenomyosis, endometriosis, amenorrhea and dysmenorrhea. Traditional imaging techniques used to assess uterine perfusion, such as transvaginal and Doppler ultrasound and pelvic magnetic resonance imaging (MRI), while clinically accurate, often present significant limitations in terms of invasiveness, cost, operator dependency, and limited suitability for real-life and repeated physiological monitoring. The aim of this experimental thesis is to help filling the gap in the current literature by characterizing the hemodynamical activity of the uterus throughout the four phases of the menstrual cycle (menstrual, follicular, ovulatory and luteal) in healthy, non-pregnant women, by introducing for the first time the application of Near-Infrared Spectroscopy (NIRS) for uterine tissues monitoring. The experimental setup involves the use of the PortaLite system (by Artinis Medical Systems), a wearable Continuous-wave Near-Infrared Spectroscopy device widely used for muscle and cerebral monitoring but never applied to uterine tissues before. Measurements were performed on 12 healthy volunteers, and the recorded NIRS signals were analyzed to extract two main parameters: the Tissue Saturation Index (TSI), reflecting tissue oxygenation, and a newly derived Perfusion index (PI), representing blood flow variations. The temporal evolution of these parameters was assessed across the menstrual cycle to investigate whether measurable differences could be detected. The results demonstrated the feasibility of using Near-infrared Spectroscopy for non-invasive and repeated monitoring of uterine physiology in normal conditions. This proof of concept provides the methodological basis for future studies involving larger number of subjects and opens new perspectives for new, innovative diagnostic tools and continuous monitoring strategies in women’s reproductive health.| File | Dimensione | Formato | |
|---|---|---|---|
|
Dorigo_Sara.pdf
embargo fino al 03/12/2028
Dimensione
6.23 MB
Formato
Adobe PDF
|
6.23 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/99630