This thesis project was developed within the research and development laboratories of FIS, a chemical company involved in organic synthesis and analytical development with the aim of industrialising robust chemical processes for the preparation of active pharmaceutical ingredients. For a few months, I became part of a team of synthesisers and analysts, working together to achieve robust synthesis routes ready for industrial scale-up. For this thesis period, I was entrusted with the identification and optimisation of a synthetic route capable of transforming two alcoholic substrates into their respective ketone products. The two substrates studied will be called Substrate L and Substrate R for confidentiality reasons. Three different synthetic routes were studied for their transformation, one chemical and two enzymatic. The first strategy studied was oxidation with TEMPO-Sodium Hypochlorite, tested on both substrates. This synthetic route was soon abandoned, since in the case of the L substrate the % conversion yield reached a maximum of 45.08%, which was not sufficient by company standards, while in the case of the R substrate oxidation led to the formation of impurities such as N-oxide. The second synthetic route studied involves the coupling of TEMPO and Laccase, a class of enzymes capable of regenerating TEMPO once it has been reduced following substrate transformation. In this case, many approaches have been tried to push the reaction towards the formation of products, changing different conditions but no conversion from Substrate L has ever been recorded. In the case of Substrate R, having maintained the presence of TEMPO as the oxidant there is always the formation of N oxide as an impurity. It was therefore decided to change the method for oxidation, using Ketoreductases, enzymes capable of catalysing redox reactions thanks to the presence of cofactors. I screened about 100 enzymes in parallel on both substrates, following the procedure indicated in the screening kit. In the vials containing the substrate L, I did not expect positive results from the outset, since L is characterised by multiple benzyl groups in positions close to the alcohol group to be oxidised, so it is unlikely to be able to enter and interact effectively with the enzyme's catalytic site. As suspected, none of the 100 enzymes catalysed the oxidation reaction of substrate L. Substrate R took a completely different course, showing conversion with eight enzymes. One enzyme in particular, named EW-KRED K203, was the most selective, leading to consistent conversion. The focus shifted entirely to this enzyme, trying to optimise the reaction conditions. I carried out OFAT (One-Factor-at-A-Time) tests, changing one variable at a time and following the reaction kinetics. Thanks to these tests, it was discovered that, in order to obtain a higher yield, the optimum pH is pH=8, the enzyme is NADP+ dependent and does not need the regeneration system with GDH and D-Glucose. The maximum yield obtained is around 50%, because it was discovered that the enzyme EW KRED K203 is selective for only one enantiomer of the initial racemic mixture. The next steps will be to continue with a statistical DoE study, test new enzymes to find one selective for the other enantiomer, or new approaches to achieve a maximum yield.
Questo progetto di tesi è stato sviluppato all’interno dei laboratori di ricerca e sviluppo di FIS, azienda chimica che si occupa di sintesi organica e sviluppo analitico con l’obiettivo di industrializzare robusti processi chimici per la preparazione di principi attivi farmaceutici. Sono entrata, per alcuni mesi, a far parte di un team di sintesisti ed analisti, che collaborano per giungere alla realizzazione di robuste vie di sintesi pronte per lo scalaggio industriale. Per questo periodo di tesi mi è stata affidata l’identificazione e ottimizzazione di una via sintetica in grado di trasformare due substrati alcolici nei rispettivi prodotti chetonici. I due substrati studiati verranno chiamati Substrato L e Substrato R per questioni di riservatezza. Per la loro trasformazione sono state studiate tre diverse vie di sintesi, una chimica e due enzimatiche. La prima strategia studiata è stata l’ossidazione con TEMPO-Ipoclorito di Sodio, testata su entrambi i substrati. Questa via sintetica è stata ben presto accantonata, in quanto nel caso del substrato L la resa % di conversione è arrivata al massimo al 45.08%, non sufficiente per gli standard aziendali; mentre nel caso del substrato R l’ossidazione ha portato la formazione di impurezze come l’N ossido. La seconda via sintetica studiata vede l’accoppiamento di TEMPO e Laccase, una classe di enzimi in grado di rigenerare il TEMPO una volta ridotto in seguito alla trasformazione del substrato. In questo caso sono stati provati molti approcci per spingere la reazione verso la formazione di prodotti, cambiando diverse condizioni ma non è mai stata registrata nessuna conversione dal Substrato L. Nel caso del substrato R, avendo mantenuto la presenza del TEMPO come ossidante si ha principalmente la formazione di N ossido come impurezza. Si è quindi deciso di cambiare metodo per l’ossidazione, ricorrendo all’uso di Ketoreduttasi, enzimi in grado di catalizzare reazioni redox grazie alla presenza di cofattori. Ho eseguito lo screening di circa 100 enzimi, in modo parallelo su entrambi i substrati, seguendo la procedura indicata nel kit di screening. Nelle vials contenenti il substrato L, già in partenza, non mi aspettavo esiti positivi, in quanto L è caratterizzato da molteplici gruppi benzilici in posizioni vicinali al gruppo alcolico da ossidare, per questo è improbabile che riesca ad entrare ed interagire efficacemente nel sito catalitico dell’enzima. Come sospettato, nessuno dei 100 enzimi ha catalizzato la reazione di ossidazione del substrato L. Un andamento completamente diverso ha subito il substrato R, dimostrando conversione con otto enzimi. Un enzima in particolare, denominato EW-KRED K203 è stato il più selettivo portando ad una conversione consistente. L’attenzione si è spostata interamente su questo enzima, cercando di ottimizzare le condizioni di reazione. Ho eseguito delle prove OFAT (One-Factor-at-A-Time) cambiando una variabile alla volta e seguendo la cinetica di reazione. Grazie a queste prove si è scoperto che, per avere una resa maggiore il pH ottimale è pH=8, l’enzima è NADP+ dipendente e non necessita del sistema di rigenerazione con GDH e D-Glucosio. La resa massima ottenuta è intorno al 50%, perché si è scoperto che l’enzima EW KRED K203 è selettivo per un solo enantiomero della miscela racemica iniziale. Gli step successivi saranno quelli di proseguire con uno studio statistico DoE, testare nuovi enzimi per trovarne uno selettivo per l’altro enantiomero, oppure nuovi approcci per arrivare ad una resa massima.
IDENTIFICATION AND OPTIMIZATION OF BIOCATALIZED SYNTHESES OF PHARMACEUTICAL INTERMEDIATES. A KEY STUDY INVOLVING REDOX ENZYMES.
CASTAGNA, SILVIA
2021/2022
Abstract
This thesis project was developed within the research and development laboratories of FIS, a chemical company involved in organic synthesis and analytical development with the aim of industrialising robust chemical processes for the preparation of active pharmaceutical ingredients. For a few months, I became part of a team of synthesisers and analysts, working together to achieve robust synthesis routes ready for industrial scale-up. For this thesis period, I was entrusted with the identification and optimisation of a synthetic route capable of transforming two alcoholic substrates into their respective ketone products. The two substrates studied will be called Substrate L and Substrate R for confidentiality reasons. Three different synthetic routes were studied for their transformation, one chemical and two enzymatic. The first strategy studied was oxidation with TEMPO-Sodium Hypochlorite, tested on both substrates. This synthetic route was soon abandoned, since in the case of the L substrate the % conversion yield reached a maximum of 45.08%, which was not sufficient by company standards, while in the case of the R substrate oxidation led to the formation of impurities such as N-oxide. The second synthetic route studied involves the coupling of TEMPO and Laccase, a class of enzymes capable of regenerating TEMPO once it has been reduced following substrate transformation. In this case, many approaches have been tried to push the reaction towards the formation of products, changing different conditions but no conversion from Substrate L has ever been recorded. In the case of Substrate R, having maintained the presence of TEMPO as the oxidant there is always the formation of N oxide as an impurity. It was therefore decided to change the method for oxidation, using Ketoreductases, enzymes capable of catalysing redox reactions thanks to the presence of cofactors. I screened about 100 enzymes in parallel on both substrates, following the procedure indicated in the screening kit. In the vials containing the substrate L, I did not expect positive results from the outset, since L is characterised by multiple benzyl groups in positions close to the alcohol group to be oxidised, so it is unlikely to be able to enter and interact effectively with the enzyme's catalytic site. As suspected, none of the 100 enzymes catalysed the oxidation reaction of substrate L. Substrate R took a completely different course, showing conversion with eight enzymes. One enzyme in particular, named EW-KRED K203, was the most selective, leading to consistent conversion. The focus shifted entirely to this enzyme, trying to optimise the reaction conditions. I carried out OFAT (One-Factor-at-A-Time) tests, changing one variable at a time and following the reaction kinetics. Thanks to these tests, it was discovered that, in order to obtain a higher yield, the optimum pH is pH=8, the enzyme is NADP+ dependent and does not need the regeneration system with GDH and D-Glucose. The maximum yield obtained is around 50%, because it was discovered that the enzyme EW KRED K203 is selective for only one enantiomer of the initial racemic mixture. The next steps will be to continue with a statistical DoE study, test new enzymes to find one selective for the other enantiomer, or new approaches to achieve a maximum yield.File | Dimensione | Formato | |
---|---|---|---|
Castagna_Silvia.pdf
accesso riservato
Dimensione
2.72 MB
Formato
Adobe PDF
|
2.72 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/10024