This paper aims to critically and comprehensively analyze the role of artificial intelligence (AI) in contemporary journalism, focusing on its main applications, ethical and professional challenges, and future perspectives for the sector. After an overview of the historical evolution of journalism and the technological innovations that have shaped its development, the study explores the origins and evolution of AI, highlighting its main forms: machine learning, natural language processing (NLP), and generative models. The central section outlines the benefits of automation, including increased productivity, faster news delivery, and greater personalization of content, while also addressing significant limitations. These include algorithmic bias, lack of transparency in automated systems, difficulty in assigning editorial responsibility to AI-generated content, data privacy concerns, limited reliability in automated fact-checking, and the growing spread of misinformation and manipulated content such as deepfakes. Finally, the paper explores future developments: from the use of multimodal models for real-time source verification to collaborative AI tools supporting investigative journalism, and the adoption of technologies such as blockchain and cryptographic watermarking to ensure content authenticity. The overall objective is to provide a balanced and up-to-date perspective on a rapidly evolving topic, highlighting how artificial intelligence is reshaping journalism and the skills needed to navigate its transformation in the years ahead.
Questo elaborato si propone di analizzare in modo critico e approfondito il ruolo dell’intelligenza artificiale (IA) nel giornalismo contemporaneo, con un focus sulle sue principali applicazioni, sulle sfide etiche e professionali che comporta, e sulle prospettive future per il settore. Dopo una panoramica sull’evoluzione storica del giornalismo e sulle innovazioni tecnologiche che ne hanno influenzato lo sviluppo, il lavoro esplora le origini e l’evoluzione dell’IA, evidenziando le sue varie forme: machine learning, elaborazione del linguaggio naturale (NLP) e modelli generativi. Nella parte centrale vengono illustrati i benefici dell’automazione, come l’aumento della produttività, la velocità nella diffusione delle notizie e la personalizzazione dell’informazione, a fronte però di limiti ancora significativi. Tra le principali criticità emergono il rischio di bias algoritmico, la scarsa trasparenza dei sistemi automatizzati, la difficoltà di attribuire responsabilità editoriali a contenuti generati dall’IA, la violazione della privacy nella raccolta e analisi dei dati, la ridotta affidabilità nel fact-checking automatizzato e la crescente diffusione di disinformazione e contenuti manipolati, come i deepfake. Infine, l’elaborato riflette sulle prospettive future: dal potenziamento di modelli multimodali per la verifica in tempo reale delle fonti all’impiego di IA collaborative a supporto del giornalismo investigativo, fino all’introduzione di tecnologie per garantire l’autenticità dei contenuti, come blockchain e watermark crittografici. L’obiettivo complessivo è fornire una visione equilibrata e aggiornata su un tema sempre più centrale nel panorama della comunicazione, mettendo in luce come l’intelligenza artificiale stia ridefinendo la professione giornalistica e le competenze richieste nel futuro prossimo.
L'intelligenza artificiale nel giornalismo: applicazioni, sfide e sviluppi futuri
STIEVANO, GIACOMO
2024/2025
Abstract
This paper aims to critically and comprehensively analyze the role of artificial intelligence (AI) in contemporary journalism, focusing on its main applications, ethical and professional challenges, and future perspectives for the sector. After an overview of the historical evolution of journalism and the technological innovations that have shaped its development, the study explores the origins and evolution of AI, highlighting its main forms: machine learning, natural language processing (NLP), and generative models. The central section outlines the benefits of automation, including increased productivity, faster news delivery, and greater personalization of content, while also addressing significant limitations. These include algorithmic bias, lack of transparency in automated systems, difficulty in assigning editorial responsibility to AI-generated content, data privacy concerns, limited reliability in automated fact-checking, and the growing spread of misinformation and manipulated content such as deepfakes. Finally, the paper explores future developments: from the use of multimodal models for real-time source verification to collaborative AI tools supporting investigative journalism, and the adoption of technologies such as blockchain and cryptographic watermarking to ensure content authenticity. The overall objective is to provide a balanced and up-to-date perspective on a rapidly evolving topic, highlighting how artificial intelligence is reshaping journalism and the skills needed to navigate its transformation in the years ahead.| File | Dimensione | Formato | |
|---|---|---|---|
|
Stievano_Giacomo.pdf
accesso aperto
Dimensione
2.68 MB
Formato
Adobe PDF
|
2.68 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/100515