The first part aims to compare three notions of dimension: the topological, Hausdorff, and Assouad dimensions. After introducing each of them, properties and theorems highlighting their differences are presented; in particular, it is shown that the topological dimension is always less than or equal to the Hausdorff dimension, which is less than or equal to the Assouad dimension. The second part focuses on Assouad’s embedding theorem, which guarantees the existence of a bi-Lipschitz embedding of any doubling metric space into a Euclidean space of appropriate dimension, provided that its metric is suitably modified.

La prima parte si propone di confrontare tre nozioni di dimensione: la dimensione topologica, di Hausdorff e di Assouad. Dopo aver introdotto ciascuna di esse, si presentano proprietà e teoremi che ne evidenziano le differenze; in particolare, si mostra che la dimensione topologica è sempre minore o uguale a quella di Hausdorff, la quale a sua volta è minore o uguale alla dimensione di Assouad. La seconda parte riguarda il teorema di immersione di Assouad, che garantisce che ogni spazio metrico doubling possa essere immerso in modo bi-Lipschitz in uno spazio euclideo di dimensione opportuna, a patto di modificarne adeguatamente la distanza.

Dimensioni topologica e metriche a confronto e teorema di immersione di Assouad

ASAD, SARA
2024/2025

Abstract

The first part aims to compare three notions of dimension: the topological, Hausdorff, and Assouad dimensions. After introducing each of them, properties and theorems highlighting their differences are presented; in particular, it is shown that the topological dimension is always less than or equal to the Hausdorff dimension, which is less than or equal to the Assouad dimension. The second part focuses on Assouad’s embedding theorem, which guarantees the existence of a bi-Lipschitz embedding of any doubling metric space into a Euclidean space of appropriate dimension, provided that its metric is suitably modified.
2024
Topological and metric dimensions compared and Assouad's embedding theorem
La prima parte si propone di confrontare tre nozioni di dimensione: la dimensione topologica, di Hausdorff e di Assouad. Dopo aver introdotto ciascuna di esse, si presentano proprietà e teoremi che ne evidenziano le differenze; in particolare, si mostra che la dimensione topologica è sempre minore o uguale a quella di Hausdorff, la quale a sua volta è minore o uguale alla dimensione di Assouad. La seconda parte riguarda il teorema di immersione di Assouad, che garantisce che ogni spazio metrico doubling possa essere immerso in modo bi-Lipschitz in uno spazio euclideo di dimensione opportuna, a patto di modificarne adeguatamente la distanza.
Dimensioni
Teorema d'immersione
Assouad
File in questo prodotto:
File Dimensione Formato  
Tesi_Asad_Sara.pdf

accesso aperto

Dimensione 975.82 kB
Formato Adobe PDF
975.82 kB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/102007