Turbomachines are widely used devices in industrial, energetic, military, and civil areas whose task is to exchange energy with the fluid that passes through them. This interaction is executed by means of blades whose shape, in combination with the working conditions, is responsible for the machine performances. During the years, several efforts were aimed at the optimization of the fore mentioned geometries. Initially, this procedure was based on empirical correlations and on designer’s experience, therefore experimental tests were the only method to verify the effective performances of the machine, resulting in high costs for its development. Hence, due to the complexity of the procedure, once satisfying performances were achieved, the project stayed actual for a long time. Though, in recent years, with the development of more and more powerful calculators, it has been possible, thanks to CFD, to solve numerically fluid equations, allowing for the forecast of the geometry performances. Although the process for optimization has been considerably simplified, numerous steps are required to reach a satisfactory solution. In fact, it is necessary to reconstruct the analysed geometry and the fluid domain, to set up a discretization of the aforementioned quantities to allow a numerical solution and to set the boundary condition of the case. Only at this point it is possible to execute the solver. Consequently, most of the designer’s effort is focused on the correct implementation of different intermediate steps rather than on the analysis of obtained results. The aim of this thesis is to simplify the fore mentioned procedure, creating a general model that allows, once a starting geometry has been defined, to directly obtain the solution and to investigate with the minor possible effort other eventual configuration close to the computed one, thus permitting a faster and more efficient optimization process. This method is based on the description of blades through the use of B-spline curves and surfaces that are governed by proper control points matrices. These latter are obtained from the baseline through some scripts and functions developed in the framework of this thesis using Matlab programming language. ANSYS Bladegen was used for geometry creation, ANSYS Turbogrid for the discretization of the computing fluid domain, finally, ANSYS CFX for setting the case and performing the solution. Since such procedure aims to be automatic, all the software is executed without user interface, through custom Matlab functions able to autonomously create the input files containing the instructions. The developed model was applied to NASA rotor 67 for validation, the speed line in design condition was calculated and compared with the data from the literature, obtaining a good correspondence. Finally, NASA CC3 compressor was analysed with satisfying results, showing the generality and wise applicability of the method.
Le turbomacchine sono dispositivi largamente utilizzati in ambienti industriali, energetici, militari e civili il cui compito è quello di scambiare energia con il fluido che le attraversa. Tale interazione è esplicata dalle pale di cui sono composte, la cui forma, legata alle condizioni di funzionamento, è responsabile delle prestazioni delle macchine stesse. Numerosi sforzi, negli anni, sono stati concentrati nell’ottimizzazione delle suddette geometrie. Tale procedura, inizialmente, era basata su correlazioni empiriche e sull’esperienza del progettista, il quale aveva come unica prova il test sperimentale per verificare l’effettiva prestazione della macchina, con conseguenti costi molto elevati per lo sviluppo della stessa. Ne consegue che, una volta ottenute delle prestazioni soddisfacenti, data la complessità del processo di ottimizzazione, il progetto rimanesse attuale per diverso tempo. Negli ultimi anni, però, con l’avvento di calcolatori sempre più potenti, è stato possibile, grazie alla CFD, risolvere numericamente le equazioni del fluido, riuscendo così a prevedere le prestazioni di una data geometria. Nonostante il processo di ottimizzazione si sia notevolmente semplificato, i passi richiesti per il raggiungimento della soluzione restano comunque numerosi. Infatti, è necessario ricreare la geometria che si intende analizzare, il dominio fluido, discretizzarlo per permettere una soluzione numerica ed impostare le condizioni del caso. Solo a questo punto è possibile eseguire il solutore, ne consegue che il lavoro del progettista sia concentrato nell’attuazione corretta dei diversi passaggi intermedi piuttosto che nell’analisi dei risultati ottenuti. L’obiettivo di questo lavoro è di semplificare la procedura riportata precedentemente, fornendo un modello generale che consenta, definita una geometria di partenza, di ottenere direttamente la soluzione e di investigare con il minimo sforzo macchine nell’intorno della stessa, permettendo così un processo di ottimizzazione più rapido ed efficiente. Tale metodo è basato sulla descrizione della palettatura mediante l’utilizzo di curve e superfici B-spline, controllate da opportune matrici di punti di controllo. Queste ultime sono ottenute dalla baseline attraverso script e funzioni sviluppate in questo lavoro di tesi, prodotte utilizzando il linguaggio di programmazione Matlab. ANSYS Bladegen è stato utilizzato per la costruzione della geometria, mentre ANSYS Turbogrid per la discretizzazione del dominio fluido di calcolo, infine ANSYS CFX per l’impostazione del caso e la soluzione dello stesso. Dal momento che la procedura sviluppata è automatica, tutti i software sono eseguiti senza interfaccia grafica, mediante opportune funzioni Matlab in grado di compilare autonomamente i file di input contenenti le istruzioni da seguire. Per validare il modello creato, questo viene applicato al rotore NASA 67, di cui viene ricavata la speed line in condizioni di design e confrontata con i risultati in letteratura, ottenendo una buona corrispondenza. Infine, viene analizzato il compressore centrifugo NASA CC3 con risultati soddisfacenti, da cui si evince la generalità e grande applicabilità del metodo.
GENERALIZED PARAMETRIC MODEL FOR AERODYNAMIC SIMULATIONS OF TURBOMACHINES
BALLAN, MATTEO
2021/2022
Abstract
Turbomachines are widely used devices in industrial, energetic, military, and civil areas whose task is to exchange energy with the fluid that passes through them. This interaction is executed by means of blades whose shape, in combination with the working conditions, is responsible for the machine performances. During the years, several efforts were aimed at the optimization of the fore mentioned geometries. Initially, this procedure was based on empirical correlations and on designer’s experience, therefore experimental tests were the only method to verify the effective performances of the machine, resulting in high costs for its development. Hence, due to the complexity of the procedure, once satisfying performances were achieved, the project stayed actual for a long time. Though, in recent years, with the development of more and more powerful calculators, it has been possible, thanks to CFD, to solve numerically fluid equations, allowing for the forecast of the geometry performances. Although the process for optimization has been considerably simplified, numerous steps are required to reach a satisfactory solution. In fact, it is necessary to reconstruct the analysed geometry and the fluid domain, to set up a discretization of the aforementioned quantities to allow a numerical solution and to set the boundary condition of the case. Only at this point it is possible to execute the solver. Consequently, most of the designer’s effort is focused on the correct implementation of different intermediate steps rather than on the analysis of obtained results. The aim of this thesis is to simplify the fore mentioned procedure, creating a general model that allows, once a starting geometry has been defined, to directly obtain the solution and to investigate with the minor possible effort other eventual configuration close to the computed one, thus permitting a faster and more efficient optimization process. This method is based on the description of blades through the use of B-spline curves and surfaces that are governed by proper control points matrices. These latter are obtained from the baseline through some scripts and functions developed in the framework of this thesis using Matlab programming language. ANSYS Bladegen was used for geometry creation, ANSYS Turbogrid for the discretization of the computing fluid domain, finally, ANSYS CFX for setting the case and performing the solution. Since such procedure aims to be automatic, all the software is executed without user interface, through custom Matlab functions able to autonomously create the input files containing the instructions. The developed model was applied to NASA rotor 67 for validation, the speed line in design condition was calculated and compared with the data from the literature, obtaining a good correspondence. Finally, NASA CC3 compressor was analysed with satisfying results, showing the generality and wise applicability of the method.File | Dimensione | Formato | |
---|---|---|---|
Ballan_Matteo.pdf
accesso riservato
Dimensione
7.06 MB
Formato
Adobe PDF
|
7.06 MB | Adobe PDF |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/10254