Introduction Artificial intelligence (AI) and machine learning (ML) have revolutionized surgery, enhancing diagnosis, disease classification, complication prediction, and surgical planning. Aim of the study This study explores biases and discrimination in predictive AI models applied to surgery, analyzing their clinical and ethical implications. Through a literature review and a survey among Italian surgeons, the research assesses awareness and preparedness regarding these issues, with the goal of identifying critical points and proposing educational and regulatory strategies for a fair and safe integration of AI into clinical practice. Materials and methods The literature review included articles published in the last ten years, retrieved from PubMed, Embase, Scopus, Cochrane Library, IEEE Xplore, JSTOR, and specialized journals, focusing on algorithmic bias, fairness, and ethics. The survey, administered via RedCap, comprised seven sections (surgical experience, knowledge of predictive models, perceived benefits, limitations, awareness of bias, ethics and responsibility, future attitudes). It was distributed by e-mail to Italian surgeons through scientific societies, hospital departments, local health authorities, and private medical groups. Data were analyzed using Jamovi with descriptive and exploratory statistical techniques. Results and discussion The sample shows optimism toward AI, but with insufficient technical preparation. Institutional training is perceived as inadequate, and knowledge of predictive models remains limited, especially outside academic contexts. Surgeons in leadership roles demonstrate greater competence, confirming the correlation between perception and actual knowledge. Overall, attitudes are positive and pragmatic: AI is considered compatible with safe practice, provided specific training is ensured. Expected benefits include surgical planning and diagnostics, while reduction of postoperative complications is viewed more cautiously. Critical issues persist regarding bias recognition, model transparency, and legal responsibility, raising the risk of automation bias. Conclusions AI and ML in surgery represent a promising frontier for improving outcomes and quality of care. Their widespread adoption requires interpretable models, standardized datasets, and ethical regulations ensuring fairness and safety. Future training must calibrate trust, anchoring optimism to critical and concrete competence regarding the real benefits and limitations of AI.
Introduzione L’intelligenza artificiale (IA) e il machine learning (ML) hanno rivoluzionato la chirurgia, migliorando diagnosi, classificazione delle patologie, previsione delle complicanze e pianificazione degli interventi. Scopo dello studio Questo studio esplora bias e discriminazioni nei modelli predittivi di IA applicati alla chirurgia, analizzandone le implicazioni cliniche ed etiche. Attraverso una revisione della letteratura e una survey tra chirurghi italiani, si valutano consapevolezza e preparazione rispetto a tali problematiche, con l’obiettivo di individuare criticità e proporre strategie formative e regolatorie per un’integrazione equa e sicura dell’IA nella pratica clinica. Materiali e metodi La ricerca bibliografica ha incluso articoli degli ultimi dieci anni reperiti su PubMed, Embase, Scopus, Cochrane Library, IEEE Xplore, JSTOR e riviste specialistiche, con focus su bias algoritmico, equità ed etica. La survey, somministrata tramite RedCap, comprendeva sette sezioni (esperienza, conoscenza dei modelli, percezione dei vantaggi, limiti, consapevolezza dei bias, etica e responsabilità, atteggiamento futuro). È stata distribuita via e-mail a chirurghi italiani attraverso società scientifiche, reparti ospedalieri, ASL e gruppi privati. I dati sono stati analizzati con Jamovi mediante tecniche descrittive ed esplorative. Risultati e discussione Il campione mostra ottimismo verso l’IA, ma con preparazione tecnica ancora insufficiente. La formazione istituzionale è percepita come inadeguata e la conoscenza dei modelli predittivi rimane limitata, soprattutto nei contesti non accademici. I chirurghi con ruoli di leadership dimostrano maggiore competenza, confermando la correlazione tra percezione e conoscenza effettiva. L’atteggiamento generale è positivo e pragmatico: l’IA è ritenuta compatibile con una pratica sicura, purché supportata da formazione specifica. I benefici attesi riguardano pianificazione e diagnostica, mentre la riduzione delle complicanze suscita cautela. Persistono criticità legate a bias, trasparenza e responsabilità legale, con il rischio di automation bias. Conclusioni L’IA e il ML in chirurgia rappresentano una prospettiva promettente per migliorare esiti e qualità delle cure. La loro diffusione richiede modelli interpretabili, dataset standardizzati e regolamentazioni etiche che garantiscano equità e sicurezza. La formazione futura dovrà calibrare la fiducia, trasformando l’ottimismo in competenza critica e concreta sui benefici e limiti reali dell’IA.
Oltre l’algoritmo: consapevolezza dei bias nei modelli predittivi IA in chirurgia
SARTI, ANGELICA
2024/2025
Abstract
Introduction Artificial intelligence (AI) and machine learning (ML) have revolutionized surgery, enhancing diagnosis, disease classification, complication prediction, and surgical planning. Aim of the study This study explores biases and discrimination in predictive AI models applied to surgery, analyzing their clinical and ethical implications. Through a literature review and a survey among Italian surgeons, the research assesses awareness and preparedness regarding these issues, with the goal of identifying critical points and proposing educational and regulatory strategies for a fair and safe integration of AI into clinical practice. Materials and methods The literature review included articles published in the last ten years, retrieved from PubMed, Embase, Scopus, Cochrane Library, IEEE Xplore, JSTOR, and specialized journals, focusing on algorithmic bias, fairness, and ethics. The survey, administered via RedCap, comprised seven sections (surgical experience, knowledge of predictive models, perceived benefits, limitations, awareness of bias, ethics and responsibility, future attitudes). It was distributed by e-mail to Italian surgeons through scientific societies, hospital departments, local health authorities, and private medical groups. Data were analyzed using Jamovi with descriptive and exploratory statistical techniques. Results and discussion The sample shows optimism toward AI, but with insufficient technical preparation. Institutional training is perceived as inadequate, and knowledge of predictive models remains limited, especially outside academic contexts. Surgeons in leadership roles demonstrate greater competence, confirming the correlation between perception and actual knowledge. Overall, attitudes are positive and pragmatic: AI is considered compatible with safe practice, provided specific training is ensured. Expected benefits include surgical planning and diagnostics, while reduction of postoperative complications is viewed more cautiously. Critical issues persist regarding bias recognition, model transparency, and legal responsibility, raising the risk of automation bias. Conclusions AI and ML in surgery represent a promising frontier for improving outcomes and quality of care. Their widespread adoption requires interpretable models, standardized datasets, and ethical regulations ensuring fairness and safety. Future training must calibrate trust, anchoring optimism to critical and concrete competence regarding the real benefits and limitations of AI.| File | Dimensione | Formato | |
|---|---|---|---|
|
TESI Sarti Angelica.pdf
accesso aperto
Dimensione
2.46 MB
Formato
Adobe PDF
|
2.46 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/102892