In this work the asymptotic behavior of completely-positive trace-precerving maps is analyzed. First, the probabilities of converging to invariant subspaces, in the limit of infinite iteration, are studied. Next, two different decompositions of the quantum system's Hilbert space are introduced, both aimed to analyze the convergence behavior and speed. Finally the possibilities that the dynamics converges to a subspace, after a finite amount of time, is investigated
Convergence Analysis for Discrete-Time Quantum Semigroup
Cirillo, Giuseppe Ilario
2014/2015
Abstract
In this work the asymptotic behavior of completely-positive trace-precerving maps is analyzed. First, the probabilities of converging to invariant subspaces, in the limit of infinite iteration, are studied. Next, two different decompositions of the quantum system's Hilbert space are introduced, both aimed to analyze the convergence behavior and speed. Finally the possibilities that the dynamics converges to a subspace, after a finite amount of time, is investigatedFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
tesi.pdf
accesso aperto
Dimensione
720.12 kB
Formato
Adobe PDF
|
720.12 kB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.12608/18571