Proof of the existence of an optimal plan. Proof of the existence of a pair of lower semicontinous convex conjugate functions which solves the Kantorovich problem. Proof of Knott-smith optimality criteria. Proof of Brenier theorem. Showing identical formulation between Euler equations and geodetics in Arnold’s work.

Introduzione alla geometria del trasporto ottimale con qualche applicazione alla fluidodinamica

Locatelli, Pietro
2019/2020

Abstract

Proof of the existence of an optimal plan. Proof of the existence of a pair of lower semicontinous convex conjugate functions which solves the Kantorovich problem. Proof of Knott-smith optimality criteria. Proof of Brenier theorem. Showing identical formulation between Euler equations and geodetics in Arnold’s work.
2019-07-09
20
trasporto ottimale
File in questo prodotto:
File Dimensione Formato  
Tesi_LT_Locatelli_Pietro.pdf

accesso aperto

Dimensione 348.02 kB
Formato Adobe PDF
348.02 kB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/23682