Proof of the existence of an optimal plan. Proof of the existence of a pair of lower semicontinous convex conjugate functions which solves the Kantorovich problem. Proof of Knott-smith optimality criteria. Proof of Brenier theorem. Showing identical formulation between Euler equations and geodetics in Arnold’s work.
Introduzione alla geometria del trasporto ottimale con qualche applicazione alla fluidodinamica
Locatelli, Pietro
2019/2020
Abstract
Proof of the existence of an optimal plan. Proof of the existence of a pair of lower semicontinous convex conjugate functions which solves the Kantorovich problem. Proof of Knott-smith optimality criteria. Proof of Brenier theorem. Showing identical formulation between Euler equations and geodetics in Arnold’s work.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Tesi_LT_Locatelli_Pietro.pdf
accesso aperto
Dimensione
348.02 kB
Formato
Adobe PDF
|
348.02 kB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/20.500.12608/23682