This thesis scope is to build a clustering model to inspect the structural properties of a dataset composed of IoT signals and to classify these through unsupervised clustering algorithms. To this end, a feature-based representation of the signals is used. Different feature selection algorithms are then used to obtain reduced feature spaces, so as to decrease the computational cost and the memory demand. Thus, the IoT signals are clustered using Self-Organizing Maps (SOM) and then evaluated

Unsupervised clustering of IoT signals through feature extraction and self organizing maps

Yankine, Ibrahim
2017/2018

Abstract

This thesis scope is to build a clustering model to inspect the structural properties of a dataset composed of IoT signals and to classify these through unsupervised clustering algorithms. To this end, a feature-based representation of the signals is used. Different feature selection algorithms are then used to obtain reduced feature spaces, so as to decrease the computational cost and the memory demand. Thus, the IoT signals are clustered using Self-Organizing Maps (SOM) and then evaluated
2017-04-13
clustering
File in questo prodotto:
File Dimensione Formato  
Ibrahim_Yankine_Tesi.pdf

accesso aperto

Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF Visualizza/Apri

The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12608/25683