La Master Equation è un’equazione integrodifferenziale che descrive l’evoluzione temporale di un ampio spettro di sistemi stocastici. Spesso se ne considera l’approssimazione diffusiva, valida nel limite di grandi lunghezze d’onda, che la trasforma in una pura equazione differenziale alle derivate parziali. Nel regime opposto, in presenza di forti discontinuità spaziali o pareti materiali, ci si attende quindi una discrepanza tra le predizioni ricavate risolvendo la Master Equation completa e quelle ottenute dalla sua approssimazione diffusiva. Il lavoro di tesi è consistito nell’evidenziare questa discrepanza attraverso l’investigazione numerica di alcuni semplici modelli costruiti ad hoc. Contrariamente alle aspettative, i risultati hanno mostrato che la dinamica diffusiva è anche in queste situazioni un’ottima approssimazione della Master Equation. È stata identificata a posteriori -dall’analisi della letteratura- una spiegazione di questo fatto; nell’ultima parte del lavoro viene fornita una nuova versione della dimostrazione.
Sull’approssimazione diffusiva della Master Equation
Tononi, Andrea
2016/2017
Abstract
La Master Equation è un’equazione integrodifferenziale che descrive l’evoluzione temporale di un ampio spettro di sistemi stocastici. Spesso se ne considera l’approssimazione diffusiva, valida nel limite di grandi lunghezze d’onda, che la trasforma in una pura equazione differenziale alle derivate parziali. Nel regime opposto, in presenza di forti discontinuità spaziali o pareti materiali, ci si attende quindi una discrepanza tra le predizioni ricavate risolvendo la Master Equation completa e quelle ottenute dalla sua approssimazione diffusiva. Il lavoro di tesi è consistito nell’evidenziare questa discrepanza attraverso l’investigazione numerica di alcuni semplici modelli costruiti ad hoc. Contrariamente alle aspettative, i risultati hanno mostrato che la dinamica diffusiva è anche in queste situazioni un’ottima approssimazione della Master Equation. È stata identificata a posteriori -dall’analisi della letteratura- una spiegazione di questo fatto; nell’ultima parte del lavoro viene fornita una nuova versione della dimostrazione.File | Dimensione | Formato | |
---|---|---|---|
Tesi_LT_Tononi.pdf
accesso aperto
Dimensione
1.17 MB
Formato
Adobe PDF
|
1.17 MB | Adobe PDF | Visualizza/Apri |
The text of this website © Università degli studi di Padova. Full Text are published under a non-exclusive license. Metadata are under a CC0 License
https://hdl.handle.net/20.500.12608/26859